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ABSTRACT 

 

    Receiver Operating Characteristic (ROC) curves are often used to evaluate the 

prognostic performance of a continuous biomarker. In a previous research, a non-

parametric ROC approach was introduced to compare two biomarkers with repeated 

measurements. An asymptotically normal statistic, which contains the subject-specific 

weights, was developed to estimate the areas under the ROC curve of biomarkers. 

Although two weighting schemes were suggested to be optimal when the within subject 

correlation is 1 or 0 by the previous study, the universal optimal weight was not 

determined. We modify this asymptotical statistic to compare AUCs between two 

correlated groups and propose a solution to weight optimization in non-parametric AUCs 

comparison to improve the efficiency of the estimator. It is demonstrated how the 

Lagrange multiplier can be used as a strategy for finding the weights which minimize the 

variance function subject to constraints. We show substantial gains of efficiency by using 

the novel weighting scheme when the correlation within group is high, the correlation 

between groups is high, and/or the disease incidence is small, which is the case for many 

longitudinal matched case-control studies. An illustrative example is presented to apply 

the proposed methodology to a thyroid function dataset. Simulation results suggest that 

the optimal weight performs well with a sample size as small as 50 per group. 
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Chapter 1

Introduction and Literature Review

1.1 Overview of biomarker evaluation in health research

1.1.1 What is a biomarker?

The term biomarker, i.e. biological marker, was first introduced in 1989 as a medical sub-

ject heading term: measurable and quantifiable biological parameters (e.g. specific enzyme con-

centration, specific hormone concentration, specific gene phenotype distribution in a population,

presence of biological substances) which serve as indices for health-related and physiology-related

assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, dis-

ease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemio-

logic studies, etc (Vasan, 2006). Biomarkers are anatomic, physiologic, biochemical, or molecular

parameters associated with the presence and severity of specific disease states. In clinical or pub-

lic health studies, a biomarker is defined as an objective measurement that acts as an indicator of

normal biological processes, pathogenic processes or pharmacologic responses to therapeutic in-

tervention (e.g. cholesterol, c-peptide secretion, or PSA) and qualification should be taken to mean

demonstrating the utility of the marker(s) for use in clinical or public health studies (NIH-FDA

1
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Conference, 1998). In 2001, an NIH working group standardized the definition of a biomarker as

”a characteristic that is objectively measured and evaluated as an indicator of normal biological

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention” and

defined types of biomarkers (Table 1.1) (Biomarkers Definitions Working Group, 2001).

Table 1.1: The Definition and Types of Biomarkers (NIH, 2001).
Biological marker (biomarker): A characteristic that is objectively measured and evaluated

as an indicator of normal biological processes, pathogenic
processes, or pharmacological responses to a therapeutic in-
tervention.

Type 0 biomarker: A marker of the natural history of a disease and correlates
longitudinally with known clinical indices.

Type I biomarker: A marker that captures the effects of a therapeutic interven-
tion in accordance with its mechanism of action.

Surrogate end point: A marker that is intended to substitute for a clinical end
point; a surrogate end point is expected to predict clinical
benefit (or harm or lack of benefit or harm) on the basis of
epidemiological, therapeutic, pathophysiological, or other
scientific evidence.

Risk factor: A risk factor is associated with a disease because it is in the
causal pathway leading to the disease.

Risk marker: A risk marker is associated with the disease (statistically)
but need not be causally linked; it may be a measure of the
disease process itself.

Clinical end point: A characteristic or variable that reflects how a patient feels,
functions, or survives.

Intermediate end point: A true clinical end point (a symptom or measure of func-
tion, such as symptoms of angina frequency or exercise tol-
erance) but not the ultimate end point of the disease, such as
survival or the rate of other serious and irreversible morbid
events.

1.1.2 What is the utility of evaluating biomarkers?

The use of biomarkers is of growing importance in clinical prognosis or diagnosis of disease.

Biomarkers are seen as valuable tools for: diagnosing disease; risk stratification and depicting the

mechanism of action of therapeutic agents; and, investigating the safety profile of an intervention

2
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drug and the response of patients to treatment. For example, in a clinical study for drug develop-

ment an appropriate biomarker can help reduce the number of participants needed for the study

and enable critical decisions on the efficacy and safety of a new drug to be made more quickly,

thus reducing patient exposure to minimum and reducing cost. Identification and improved use of

disease biomarkers are also important for prevention and early diagnosis, which are essential to re-

duce mortality and complications from disease. Depending on the type of information biomarkers

provide, biomarkers can be classified as antecedent biomarkers (identifying the risk of developing

an illness), screening biomarkers (screening for subclinical disease), diagnostic biomarkers (recog-

nizing overt disease), staging biomarkers (categorizing disease severity), or prognostic biomarkers

(predicting future disease course, including recurrence and response to therapy, and monitoring

efficacy of therapy). Biomarkers may also serve as surrogate end points (Mayeux, 2004).

1.1.3 How are biomarkers measured?

Biomarkers are detectable and measureable by a variety of methods, including physical ex-

amination, laboratory assays and medical imaging. A biomarker may be measured in a biological

sample (such as a blood, urine, or glucose test), it may be a recording obtained from a person (such

as blood pressure, weight, or temperature), or it may be an imaging test (such as echocardiogram

or CT scan). New medical technologies promise a vast array of tools for diagnosis and screening.

In recent years, there has been much focus on studying biomarkers that could potentially provide

non-invasive and accurate ways of detecting disease, predicting disease progression, and evalu-

ating patients’ response to treatment. Tools such as gene expression profiling and protein mass

spectrometry provide a plethora of possible biomarkers that must be studied further to assess their

accuracy.

3
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It has been recognized that the qualification of biomarkers is under-resourced, in part be-

cause it is seen as a major undertaking and may be high-risk. However, the risk in exploring a

putative biomarker for clinical studies is reduced if the biomarker is biologically plausible, that is,

it can be linked closely to the pathology of the disease or is in a pathway that is closely linked to

the effect of a treatment. Biomarker measurements can yield the qualitative results, with simply

positive or negative. However, many of these biomarkers that are used in a qualitative manner are

measured on a continuous scale or an ordinal scale. Statistical techniques to evaluate biomarkers

are developed mainly to assess the strength of association of biomarker with the disease. One of

most important aspects for the evaluation of biomarkers to be used in clinical research is their sensi-

tivity, specificity, and overall diagnostic/prognostic ability. In this dissertation focus will be placed

on evaluating the the diagnostic/prognostic ability of tests measured by the continuous biomarker.

1.2 Measures of accuracy for continuous biomarker

Often, biomarkers are measured on a continuous scale, such as an amount or concentra-

tion. The receiver Operating Characteristics (ROC) Curve is one of the best statistical methods for

evaluating the diagnostic/prognostic performance of qualitative biomarkers. It is a technique for

visualizing, organizing and selecting classifiers based on their predictive accuracy.

ROC has been used in many areas of research since it has been developed. ROC method-

ology proves to be particularly useful not only in measuring the predictive accuracy of a test or

decision-making strategy, but also in dealing with sensitivity/specificity tradeoffs when a classifier

variable is actually used in final classification decision-making.

4
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1.2.1 The history of ROC curves

The ROC methodology was first developed by electrical engineers and radar engineers dur-

ing World War II for detecting enemy objects in battle fields, also known as the signal detection

theory. In the 1950s, ROC curves were employed in psychophysics to assess human (and occasion-

ally non-human animal) detection of weak signals (Green et al., 1966). In the late 1960s, it was first

used in medicine for the assessment of imaging devices (reviewed by Zweig et al., 1993). Since

then, it has been increasingly used for the evaluation of clinical laboratory tests (Henderson, 1993;

Smith et al., 1995; Greiner et al., 1997) in epidemiology and medical research. More recently, ROC

curves also proved useful for the evaluation of engineering techniques (Nockemann, 1991). For

example, Spackman demonstrated the value of ROC curves in comparing and evaluating different

classification algorithms of machine learning (Spackman, 1989).

1.2.2 Definition of ROC

An ROC curve is a plot of TPR (or sensitivity) (plotted on the y axis) versus its FPR (or

100%- specificity) (plotted on the x axis) (Figure 1.1). The scales of the curve, sensitivity and

speficity are the basic measures of accuracy and are easily read from the plot. Two parameters

(sensitivity and specificity) can fully describe the probabilities of the four possible test outcomes

(TPR=True Positive Rate, TNR=True Negative Rate, FPR=False Positive Rate and FNR=False

Negative Rate).

Mathmatically, using a threshold c to define a binary test from a continuous biomarker Y (y ∈

(−∞,+∞)) as

Positive if Y ≥ c,

5
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Negative if Y ≤ c,

let the corresponding true and false positive rate at the threshold c be TPR (c) and FPR (c) respec-

tively, we define:

TPR(c) =P[Y ≥ c|D = 1],

FPR(c) =P[Y ≥ c|D = 0],

and the ROC curve is the entire set of possible true and false positive fractions obtained by di-

chotomizing Y with different thresholds. That is:

ROC( . )=[(FPR(c), TPR(c)), c ∈ (−∞,+∞)] .

As the threshold increases, both FPF (c) and TPF (c) decrease. As c approaches positive

infinity, limc→∞ TPR(c) = 0% and limc→∞ FPR(c) = 0%. At the other end, as c approaches

negative infinity, limc→∞ TPR(c) = 100% and limc→∞ TPR(c) = 100% .

1.2.3 Basic principal of the ROC curve

Area under the ROC curve can take on values between 0% and 100%. It is a monotonic

increasing function. A biomarker with an area under the ROC curve of 100% is perfectly accurate

because the true positive rate (i.e sensitivity) is 100% and the false positive rate (i.e 1-specificity) is

0%. In contrast, a biomarker with an area of 0% is perfectly inaccurate. ROC plots for diagnostic

tests with perfect discrimination between disease and disease free reference samples (no overlap

of values of the two groups) pass through the co-ordinates (0%, 100%) which represent 100%

sensitivity (TPR) and specificity (1-FPR). In this case, the AUC would be 100%. The diagonal

divides the ROC space. Points above the diagonal represent good classification results, points

6
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below the line poor results. Biomarkers that better discriminate disease from disease-free have

ROC curves that are higher and to the upper left corner.

The ROC plot has many advantages over single measurement of sensitivity and specificity.

The ROC curve displays all possible thredholds and illustrates how sensitivity and specifcity vary

together.

ROC curves are invariant with respect to monotonic transformations of the original test data

such as the linear (with positive slope), logarithmic and square root (Campbell, 1994). The curve

does not depend on the scale of the test results, that is, we can alter the test results by adding or

subtracting a constant or taking the logarithm or square root without any change to the ROC curve.

Because sensitivity and specificity are independent of disease prevalence, so too is the ROC

curve.

 

Figure 1.1: ROC Curve.

A theoretical optimal prediction can achieve 100% sensitivity (i.e. predict all people from

7
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Figure 1.2: The Trade-off by Varying the Cut-off Point.

the sick group as sick) and 100% specificity (i.e. not predict anyone from the healthy group as

sick). However, there is usually a trade-off between the measures for the test. The choice of a

suitable cut-off value will vary with circumstances. Three criteria are commonly used to find op-

timal cut-off value from ROC curve, including point on curve that is closest to the (0, 1), Youden

index, and minimize average cost criterion(Metz, 1978; Perkins et al.,2005). For example, we can

make a test have very high sensitivity, but this sometimes results in low specificity. As described

by Schfer (Schafer, 1989), the cut-off value and the resulting sensitivity (or specificity) can be

obtained for a pre-selected specificity (or sensitivity). It may also depend on the availability of

health care resources and perceived gravity of the disease condition. That is, the choice of crite-

rion value depends on the trade-off that is acceptable between failing to detect disease and falsely

identifying disease with the test as depicted in Figure 1.2. Optimally, the cut-off selection proce-

dure is an informed decision that takes into account the epidemiologic situation (e.g. prevalence

in the target population) and the relative consequences of FN and FP test results (which may differ

8
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for every different decision-making situation). Given a disease of low prevalence and high cost

of false-positive diagnoses, it may be advisable to choose a cut-off at the lower part of the curve

to maximize specificity. On the other hand, if the disease occurs at high prevalence and missing

any diseased animal has serious consequences, a cut-off value towards the upper part of the curve

would be selected to maximize sensitivity. For example, for evaluating women with a personal

history of breast cancer, we need a cut point with good sensitivity even if the specificity is low.

1.2.4 Area under the ROC curve

The area under the ROC curve (AUC) is a global (that is based on all possible thredhold

values) summary statistic of diagnostic accuracy. AUC is a measure of how well a biomarker

can distinguish between two diagnostic groups (diseased/diseased-free). It is widely used as a

summary index for the ROC. Mathematically, AUC is defined as:

AUC =

∫ 1

0

ROC(t)d(t) (1.1)

AUC under the ROC curve area has several interpretations: (a) the average value of sensi-

tivity for all possible values of specificity,

AUC =

∫ 1

0

Sen(Spe−1(t))dt

=

∫ ∞
−∞

Sen(c)dSpe(c)

= Average(Sensitivity)

or (b) the average value of specificity for all possible values of sensitivity (Metz, 1978; Hanley et

9



www.manaraa.com

al, 1982), and

AUC =

∫ 1

0

Sen(Spe−1(t))dt

=

∫ ∞
−∞

Spe(c)dSen(c)

= Average(Specificity)

or (c) the probability that a randomly selected patient with disease has a test result that indicates

greater suspicion than a randomly chosen patient without disease (Swets, 1988).

AUC =

∫ ∞
−∞

Sen(c)dSpe(c)

=

∫ ∞
−∞

(1−GY (c))dFX(c)

=

∫ ∞
−∞

FX(c)dGY (c)

= Pr(Y > X)

The area measures discrimination, that is, the ability of the test to correctly classify those

with and without the disease. Consider the situation in which patients are already correctly classi-

fied into two groups. You randomly pick on from the disease group and one from the disease-free

group and do the test on both. The patient with the more abnormal test result should be the one

from the disease group. The area under the curve is the percentage of randomly drawn pairs for

which this is true, that is, the test correctly classifies the two patients in the random pair.

1.3 Non-parametric estimation of AUC

A subject is assessed as diseased (positive) or non-diseased (negative) depending on whether

the corresponding biomarker value is greater than or less than or equal to a given threshold value.

10
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Associated with any threshold value c is the probability of a true positive (sensitivity) and the

probability of a true negative (specificity). The theoretical ROC curve is a plot of q = sensitivity

versus p = 1 − specificity for all possible threshold values. Suppose that biomarker results

x1, x2, ..., xm and y1, y2, ..., yn are available from the non-diseased and diseased population having

cumulative distribution functions F (x) and G(y), respectively. Then at threshold c, q = 1− F (c)

and p = 1 − G(c). The theoretical ROC curve is a plot of (1 − G(c), 1 − F (c)) for all possible

values of c or, equivalently, a plot of (p, q) where p ranges from 0 to 1 and q = 1−F (G−1(1−p)).

AUC is the area under this curve. AUC can be estimated parametrically, with the assumption that

either the biomarkers themselves or some unknown monotonic transformation of the biomarkers

follows a bi-normal distribution. Nevertheless, if the normal assumption is not met or tenuous,

the non-parametric methods using the empirical ROC curve are preferred. In this section, we

review two non-parametric approaches for estimating the AUC. One is to use the trapezoidal rule

to approximate AUC by integration and the second is to use the Mann-Whitney statistic.

1.3.1 Non-parametric methods

If sensitivity and specificity are denoted by q and p, respectively, the trapezoidal rule calcu-

lates the area by joining the points (q, p) at each interval value of the continuous biomarker and

draws a straight line joining the x-axis. This forms several trapezoids and their area can be easily

calculated and summed.

Another interesting parallel meaning for AUC is that AUC is the probability that a randomly

observed test result in diseased subjects is higher than a randomly observed test result in non-

diseased subjects. It arises if we think just about comparing the distributions of biomarker between

11
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non-diseased and diseased subjects. At the most elementary level, one might want to know whether

the distributions of two groups had means that were statistically different. If the distributions were

normal, a two-sample t-test would be a logical starting point to answer this question. The non-

parametric analog to the t-test is the Wilcoxon rank-sum test, or synonymously the Mann-Whitney

U test, which is a non-parametric test. That is, AUC is the Mann-Whitney U statistic in the version

of the two-sample rank-sum test (Shapiro, 1999). It has been shown that the area under an empirical

ROC curve, when calculated by the trapezoidal rule, is equal to the Mann-Whiteney two sample

statistics applied to the two samples (Bamber, 1975; Hanley et al., 1982). The Mann-Whitney

statistics estimated the probability, θ, that a randomly selected observation from the population

represented by A will be less than or equal to a randomly selected observation represented by B.

The estimate,θ̂, can be computed as the average over a kernel, ψ, as

θ̂ = 1
mn

∑m
j=1

∑n
i=1 Ψ(Xi, Yj) (1.2)

Where Ψ(Xi, Yj) =


1 if Y < X;

1/2 if Y = X;

0 if Y > X;

In terms of probabilities E(θ̂) = θ = Pr(Y > X) + 1/2Pr(Y = X). For continuous

distributions, Pr(Y = X) = 0.

This non-parametric interpretation requires no assumptions regarding the distribution of the

disease and healthy reference samples.

12
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1.3.2 Comparison of two AUCs

We will review the methods that can be used to compare two AUCs, which could arise

when it is necessary to compare AUCs from two different biomarkers; or compare AUCs from

the same biomarker by multi-readers. An important problem concerns the comparison of two

correlated AUCs, such as two AUCs derived from two biomarkers measured on the same set of

patients. Consider a comparison for two continuous biomarkers BM1 and BM2 that were measured

on the same m non-diseased subjects and n diseased subjects. The subjects are assumed to be

mutually independent. We denote the bivariate outcomes as (X1j, X2j)(j = 1, 2, · · · ,m) and

(Y1k, X2k)(k = 1, 2, · · · , n), respectively. The respective bivariate distributions are F (x1, x2) and

G(y1, y2); the marginal distributions are F1(x1), F2(x2),G1(y1) and G2(x2). For ith biomarker, it

is called positive if this biomarker value exceeds a cut-off value c. The corresponding specificity

for ith biomarker is Fi(c) and the corresponding sensitivity 1 − Gi(c). As c takes on all possible

values, we can generate the ROC curve plot (1−Fi(c), 1−Gi(c)) . To compare two biomarkers, we

can test if the difference of two AUCs is equal to zero. The null hypothesis is: ∆ = θ1 − θ2 = 0.

Denoting the sensitivity at specificity p by Si(p) = 1 − Gi(F
−1
i (p)), this comparison can be

expressed as:

∆ =

∫ 1

0

(S1(p)− S2(p))dW (p) (1.3)

where W(p) =


0 if 0 < p < p1

p−p1
p2−p1 if p1 ≤ p ≤ p2

1 if p2 < p < 1

A nonparametric procedure for comparing diagnostic biomarkers with paired or unpaired
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data based on a weighted average of sensitivities was developed by Wiend, Gail, and Hanley

(Wiend et al., 1983). Pearson correlation coefficients were used to estimate the correlation of the

two AUCs. Hanley and McNeil (Hanley et al., 1983) used the properties of U-statistics to compare

two AUCs from paired data. The approach suggested using the binormal assumption for estimation

of the covariance between two area estimators. DeLong et al. (Delong et al., 1988) proposed a

more completely nonparametric approach which was based on the propertied of the Mann-Whitney

statistics to obtain an estimated covariance matrix. Under this framework, the AUCs of any two

biomarkers can be compared by evaluating the difference of the AUCs which is asymptotically

normal.

The Mann-Whitney statistics estimates the probability, θ, that a randomly selected observa-

tion form the population represented by A will be less than or equal to a randomly selected obser-

vation from the population represented by B. It can be computed as θ̂ = 1
mn

∑m
j=1

∑n
i=1 Ψ(Xi, Yj).

Asymptotic normality and an expression for the variance of the Mann-Whitney statistic can be de-

rived from theory developed for generalized U-statistics by Hoeffding (Hoeffding, 1948). Define:

ξ10 = E[Ψ(Xi, Yj)Ψ(Xi, Yk)]− θ2, j 6= k;

ξ01 = E[Ψ(Xi, Yj)Ψ(Xk, Yj)]− θ2, j 6= k;

ξ11 = E[Ψ(Xi, Yj)Ψ(Xi, Yj)]− θ2.

Then, we obtian the varaince of θ̂:

var(θ̂) =
(n− 1)ξ10 + (m− 1)ξ01

mn
+
ξ11
mn

(1.4)

Hoeffing’s theory extends to a vector of U-statistics. Let θ̂ = (θ̂1, θ̂2, ..., θ̂k) be a vector

14
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of statistics, representing the areas under the ROC curves derived from the values of k different

biomarkers. We define,

ξ10
rs = E[Ψ(Xi

r, Yj
r)Ψ(Xi

s, Yk
s)]− θrθs, j 6= k;

ξ01
rs = E[Ψ(Xi

r, Yj
r)Ψ(Xk

s, Yj
s)]− θrθs, j 6= k;

ξ11
rs = E[Ψ(Xi

r, Yj
r)Ψ(Xi

s, Yj
s)]− θrθs.

The covariance of the and statistics can then be written as:

cov(θ̂r, θ̂s) =
(n− 1)ξ10

rs + (m− 1)ξ01
rs

mn
+
ξ11

rs

mn
(1.5)

A method of structural components by Sen (Sen, 1960) is used to provide consistent es-

timates of the elements of the variance-covariance matrix of U-statistics, which is equivalent to

jackknifing. The resulting test statistic for comparing two or more correlated AUCs has been

proved to be asymptotically chi-square distributed.

1.4 Biomarker evaluation in longitudinal settings

Some large-scale cross-sectional screening programs have come under heavy criticism for

being ineffective and wasteful of public health resources, largely because the biomarkers used have

poor specificity, that is, high false positive rate and/or low sensitivity, that is, high false negative

rate. Using a biomarker by comparing the current observed level with a given critical value can lead

to poor specificity and sensitivity because of between-subject variability. Because intra-subject

variability is substantially less than inter-subject variability, a series of repeated biomarker can

result in a more sensitive or statistically powerful test. Moreover, a series of measurements taken

15



www.manaraa.com

periodically enable the entire response pattern to be used to assess the subject’s disease status.

Longitudinal biomarker analysis seeks to evaluate whether changes in a biomarker process are

correlated with the clinical outcome such as disease onset or death. Repeated measures design

has now grown tremendously in biological, medical and health services research because of its

advantages, but statistical methods for evaluating repeated biomarkers, have been challenging for

such designs due to the dependency of data points.

1.4.1 Statistical methods for repeated biomarkers

One useful way to analyze such repeated biomarker is to describe the marginal mean of

the outcome (disease status) as a function of the covariates (biomarkers) while taking into account

the correlation between the measurements. This is the generalized estimating equations (GEE)

(Liang et al., 1986; Zeger et al., 1986) approach for analyzing correlated categorical data using

a variety of different working correlation matrices, such as exchangeable, banded, unstructured.

Another popular way for longitudinal biomarker analysis is to employ the Cox proportional hazards

regression model with a time dependent covariate (Cox, 1972; Breslow, 1975). Prentice et al.

(Prentice et al., 1978) used this approach to investigate the electiveness of the grade of graft versus

host disease as a risk indicator for the recurrence of Leukemia in bone marrow transplant patients.

More recently, a number of researchers have concentrated on the joint distributional mod-

eling of the longitudinal biomarker data and the onset of a clinical event using a semi-parametric

longitudinal model and a proportional hazard model (Tsiatis et al., 1995). A biomarker is assumed

to follow a semi-parametric mixed model where covariate effects are modeled parametrically and

subject-specific time measurements are modeled non-parametrically using a population smoothing
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spline and subject-specific random stochastic processes. The Cox model is assumed for survival

data by including both the current measure and the rate of change of the underlying longitudinal

trajectories as covariates. Degruttol et al. applied this method to model progression of CD-4 lym-

phocyte count and its relationship to survival time (DeGruttol et al., 1993; DeGruttol et al., 1994)

All the methods above evaluate the statistical significance of associations between the marker pro-

cess and occurrence of the disease outcome of interest and none of them directly address the issue

of the sensitivity of the biomarker as a diagnostic instrument. However, it does help identify high

risk patients for recruitment into prevention trials.

1.4.2 Area under curve for repeated biomarkers

The use of AUC for repeated biomarker simplifies the statistical analyses by transforming

the multivariate data into univariate space, especially when the numbers of repeated measurements

are high and there is a need to summarize the information. The computation of the area under the

curve (AUC) is a useful method particularly in endocrinological research and other chronic disease

research to comprise information that is contained in repeated measurements over time. Parker

and Delong extended the semi-parametric ROC method for cross-sectional studies (Delong et al.,

1985), whereby the biomarker test is applied once to each subject in a population, to accommodate

a framework in which the biomarker test is repeated over time to monitor for occurrence of an

event. Within this frame work, sensitivities are calculated directly from the data. Specificities

are estimated via a discrete logistic regression model. Calculation of variances and covariance

for estimates of the areas under ROC curves is simplified by relying on a one-step approximation

to parameter estimates from the discrete logistic regression models with individual observations

deleted (Parker et al., 2003). However, their method requires that each subject could have at most
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one event.

Emir et al. (Emir et al., 1998) proposed a non-parametric approach to estimate both sensitiv-

ity and specificity of a biomarker when each subject could have more than one event. The approach

involves estimating subject-specific sensitivities and specificities and taking weighted averages of

these estimates over all subjects. Emir et al. (Emir et al, 2000) further extended it to the estimation

of the AUC for a repeated biomarker and to comparison of two biomarkers with repeated measure-

ments. Using new definitions of specificity and sensitivity, an asymptotically normal statistic is

used to compare the average of sensitivities across all specificities or a range of specificities.

When the subjects are limited and cost is high, the efficiency of studies is crucial. In

many studies, the correlated-groups designs are preferred by researchers due to increased statisti-

cal power. These designs do not include random assignment but, nevertheless, provide equivalent

groups at the start of the study and allow other controls to be applied. There are two ways of

introducing the correlation among participants in correlated-groups designs: (1) by having a sin-

gle group of participants exposed to all of the conditions (repeated measures designs); and (2)

by matching participants on some important variable(s)(matched-subjects designs). In a matched-

subject study with the repeated measurements, it may be of clinical interest to compare the prog-

nostic performance of the biomarker between correlated groups to determine if the prognostic

accuracy in one of the groups is superior. The statistics for comparing the diagnostic/prognostic

accuracy of a biomarker between the correlated populations is challenging because it needs to

deal with not only within-subject but also between-group correlations. In the current literature, no

method is available to address this situation.
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1.5 Aims and objectives

In this dissertation, an extensive analysis of area under the ROC curve in longitudinal set-

ting will be presented. The aim of this research was to develop novel and robust statistical methods

for the evaluation of a repeated biomarker particularly where the diagnosis/prognosis accuracy of

biomarker needs to be compared between the correlated populations, such as in a matched desgin

study. Specifically, the objectives are to modify Emir’s asymptotic normal statistics to compare

two AUCs between correlated groups for the repeated biomarker; to research novel methods for

weight optimization in comparing non-parametric AUCs of a repeated biomarker between corre-

lated groups; to demonstrate the asymptotic relative efficiency of this novel weighting scheme; and

to show how the correlations and the incidence rate of disease impact the efficiency through the

simulation studies. As well, I will present a published work to demonstrate how ROC analysis can

be applied in type 1 diabetes intervention research.
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Chapter 2

Weight Optimization for Comparing Areas
under the ROC Curve between Correlated
Groups for a Repeated Biomarker

2.1 Motivation and Background

The association between thyroid disorders and risk of breast cancer has long been a sub-

ject of debate. SunCoast CCOP Research Base at the University of South Florida is conducting a

matched-subject design trial to study thyroid function and breast cancer: A pilot study to estimate

the prevalence of thyroid dysfunction in women diagnosed with breast cancer and the magnitude

of change in thyroid function post-chemotherapy. Two hundred and fifty breast cancer patients

between ages of 25 and 75, diagnosed with primary, operable, stage I-III B breast cancer with

planned chemotherapy regimen Adriamycin/Cytoxan (AC) plus a taxane were the trial candidates.

Two hundred and fifty healthy voluteers, from the same general demographic area, without prior

history of cancer and within 5 years of the patient’s age (+/- 5 years) were matched for each cancer

patient. All subjects were followed for two years or until disease onset. All biomarkers were col-

lected at baseline, yearly, and at the end of study. Free T4 and TSH have been identified as reliable
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and the most effective tool for diagnosing thyroid function. They are used to define the status of

hypothyroidism as the gold standard. The antibody TPO is a useful biomarker for establishing the

presence of thyroid autoimmunity as the cause of hypothyroidism. Previous studies have shown

that the higher the TPOAb concentration, the more rapid the development of hypothyroidism. If

the women with breast cancer are at higher risk of having thyroid disorders or changes in antibody

level that might result in worsened hypothyroidism, it is important to understand the mechanism

of these changes. The characterization of prediction accuracy is essential to the success of future

prevention trials for thyroidism disorder among the women with breast cancer. Of particular in-

terests, clinicians hypothesized that the breast cancer may alter the performance of TPO antibody

titers in predicting thyroidism disorder. In this study data, there are two types of correlation among

participants: (1) within-subject correlation due to repeated measurements; and (2) between-group

correlation introduced by matching participants on some important variable(s) (matched-subject

design). Under these circumstances, the statistics for evaluating the biomarker need to deal with

not only within-subject but also between-group correlations.

The diagnostic/prognostic accuracy of a binary biomarker is most commonly measured by

its sensitivity and specificity. Sensitivity is the proportion of subjects who have postive test result

among those who truly have the disease. Similarly, specificity is the proportion of subjects who

have negative test result among those who truly do not have the disease. When the biomarker is

measured on a continuous scale, the sensitivity and specificity of the test depends on the specific

threshold selected. The receiver operating characteristic (ROC) curve is a plot of sensitivity and 1-

specificity for all possible thredholds in the study dataset. To evaluate the discriminatory ability of

a continuous biomarker, we commonly summarize the information of the ROC curve into a single

21



www.manaraa.com

global index. The most used index of the overall performance of a continuous biomarker is area

under the ROC curve (AUC).

For evaluating a repeated biomarker in a single group, Emir et al. (1998) proposed a non-

parametric estimate of sensitivity and specificity. In 2000, Emir et al. further extended the earlier

research and derived the estimation of AUC under the ROC curve for a repeated biomarker. An

asymptotic normal statistic was developed to test area under the ROC curve of a repeated biomarker

in a single group and the bootstrap method was used to obtain the variance of this estimate. The

approach allows for estimating AUC in the presence of within-subject (repeated) correlation. It

involves estimating subject-specific sensitivities and specificities and taking weighted averages of

these estimates over all subjects.

The nonparametric estimate of AUC proposed by Emir et al. (2000) involves assigning a

weight to each subject. Two weighting schemes were suggested: (1) assigning equal weights to

all biomarker measurements, and (2) assigning equal weights to all subjects. It was suggested that

weighting scheme 1 would be optimal when the correlation within subject is 1 and that weight-

ing scheme 2 would be optimal when the correlation within subject is 0. However, the universal

optimal weights were not determined. More recently, a novel solution to the weight optimiza-

tion problem was introduced by Wu et al. (2011), who proposed the Lagrange Multiplier Method

to find the optimal weights, which minimize the variance of AUC estimate for a single repeated

biomarker or comparing AUCs from two biomarkers in a single group. The optimal weights for

AUC comparison proposed by Wu et al. (2011) dealt with the difference of paired biomarkers from

the same subject. To compare AUCs of a repeated biomarker between two correlated groups, we

may apply Wu et al.’s method (2011) to each group and obtain two sets of weights, one for each
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group. However, these weights would not be optimal because the method cannot take the between-

group correlation into consideration as the disease progression may be different, and the number

of biomarker measurements may be different between groups. A generalization of interest for us

is to find the universal optimal weights for comparing AUCs of a repeated biomarker between two

correlated groups, which is often of interested by clinicians or researchers to select the best envi-

ronment or condition for the biomarker and/or better understand the mechanism of the disease. The

goals of this article are to modify the asymptotic statistics by Emir et al. (2000) to compare AUCs

between two correlated groups and obtain the variance of this estimate; to determine the optimal

weight sets which can minimize the variance of this estimate; to demonstrate the asymptotic rela-

tive efficiency of the optimal weighting scheme; and to show how the between-group correlation,

the within-subject correlation, and the incidence rate of disease impact the efficiency.

The remainder of this article is organized as follows. In Section 2, the non-parametric

approach for comparison of AUCs between two correlated groups is introduced and two simple

weight schemes are discussed in detail. The optimal weights are derived using the Lagrange Mul-

tiplier Method in Section 3. In Section 4, the asymptotic relative efficiencies comparing different

weight schemes are presented; here we also show how the correlation between groups, the cor-

relation within subject, and/or the incidence of disease may impact the efficiency. In Section 5,

we illustrate how we can apply the method on the motivation data example. In Section 6, the fi-

nite sample performance of the estimators using different weighting schemes are revealed through

simulation studies. The article ends with concluding remarks in Section 7.
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2.2 Non-parametric comparison of two correlated AUCs

2.2.1 Notations

Suppose that we have a random sample of n subjects who were exposed to some existing

conditions (the exposed group). Each subject in the exposed group was mathced to a subject who

was not exposed to the conditions, based on some confounding variables, such as age or gender.

The n subjects resulting from the matching form the non-exposed group. All subjects are being

followed for the outcome of disease progression. A biomarker was repeatly measured over time

until the end of study or the disease progression. Let Xijl be the continuous random variable

whose observations are the biomarker values obtained from the ith group (i = 1 if exposed group

and i = 2 if non-exposed group), for the jth subject (j = 1, 2, · · · , n), at the lth non-progression

visit (l = 1, 2, · · · ,mij), where mij is the number of non-progression visits for subject j in group

i. Let Yij be the continuous random variable associated with values for the same biomarker from

the jth subject in the ith group at the progression visit. Also let δij = 1 if subject j in the ith group

became a progressor and = 0 otherwise. Define Di =
∑n

j=1 δij as the total number of progressors

in the ith group. Let Fi and Gi be the distribution functions of Xijl and Yij , respectively. Further,

let θi represent area under the respective ROC curves of biomarker in the ith group. In this article,

we discuss test for the null hypothesis of H0 : θ1 − θ2 = 0 versus the alternative hypothesis

H1 : θ1 − θ2 6= 0.
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2.2.2 Non-parametric estimate of area under the ROC

Assume that the biomarker will be considered to be positive if the value of Xijl or Yij

exceeds a predetermined thredhold c. Non-parametric estimate of area under the ROC curve for the

biomarker can be obtained using standard method based on the empirical cumulative distribution

functions (CDFs) corresponding to Fi and Gi. Area under the ROC curve of a repeated biomarker

for the ith group is θi =
∫∞
−∞ Fi(c)dGi(c). The corresponding area estimate, θ̂i, is given by

θ̂i =

∫ ∞
−∞

F̂i(c)dĜi(c), (2.1)

where

F̂i(c) =
n∑
j=1

wij

{
1

mij

mij∑
l=1

I(xijl ≤ c)

}
,

Ĝi(c) =
1

Di

n∑
j=1

δijI(yij ≤ c),

and (wi1, · · · , win) is a set of weights assigned to subjects in the ith group, satisfying wij > 0, j =

1, · · · , n and
∑n

j=1wij = 1.

Let ∆ = θ1 − θ2 be the true AUC difference between two correlated groups. The non-

parametric estimate of ∆ is ∆̂ = θ̂1 − θ̂2, given by

∆̂ =

∫ ∞
−∞

F̂1(c)dĜ1(c)−
∫ ∞
−∞

F̂2(c)dĜ2(c). (2.2)

In next section, we will consider the optimal weights to minimize the variance of ∆̂.
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2.3 The optimal weighting scheme

The estimate of ∆̂ involves a set of weights in each group. We can use two simple weighting

schemes that were provided in Emir et al. (2000): (1) assigning equal weights to all biomarker

observations in each group, i.e., wij = mij/
∑n

j′=1mij′ , when the within-subject correlation is

low; or (2) assigning equal weights to all subjects in each group, i.e., wij = 1/n when the within-

subject correlation is high. Alternatively, we may use the Lagrange Multiplier Method to derive

the optimal weights which can minimize the variance of ∆̂.

To derive the optimal weights, we utilize the following fact

∆̂−∆ =
n∑
j=1

(ε1j + ξ1j − ε2j − ξ2j) + o(n−1/2), (2.3)

where

εij =
δij
Di

∫ ∞
−∞

Fi(c)d {I(yij ≤ c)−Gi(c)} ,

ξij =
wij
mij

mij∑
l=1

∫ ∞
−∞
{I(xijl ≤ c)− Fi(c)} dGi(c).

The proof of (2.3) above can be found in Appendix of publication by Emir et. al (2000).

Defining the transformations

Uijl = Gi(xijl), Vij = Fi(yij), (2.4)

we can express the variances of θ̂1 and θ̂2, and the covariance between θ̂1 and θ̂2 in terms of Uijl
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and Vij . They are

V ar
n∑
j=1

(ε1j + ξ1j) = σ2
u1

n∑
j=1

∑
l 6=l′ corr(U1jl, U1jl′)

m2
1j

w2
1j

−2σu1σv1
D1

n∑
j=1

w1jδ1j
m1j

m1j∑
l=1

corr(U1jl, V1j) +
σ2
v1

D1

,

V ar

n∑
j=1

(ε2j + ξ2j) = σ2
u2

n∑
j=1

∑
l 6=l′ corr(U2jl, U2jl′)

m2
2j

w2
2j

−2σu2σv2
D2

n∑
j=1

w2jδ2j
m2j

m2j∑
l=1

corr(U2jl, V2j) +
σ2
v2

D2

,

Cov(
n∑
j=1

(ε1j + ξ1j),
n∑
j=1

(ε2j + ξ2j)) = σu1σu2

n∑
j=1

n∑
j=1

w1jw2jcorr(U1jl, U2jl)

m1jm2j

+
σu2σv1
D1

n∑
j=1

w2jδ1j
m2j

m2j∑
l=1

corr(U2jl, V1j)

+
σu1σv2
D2

n∑
j=1

w1jδ2j
m1j

m1j∑
l=1

corr(U1jl, V2j)

+
σv1σv2

∑n
j=1 δ1j

∑n
j=1 δ2jcorr(V1j, V2j)

D1D2

,

where σ2
u1 = V ar(U1jl), σ

2
v1 = V ar(V1j), σ

2
u2 = V ar(U2jl), and σ2

v2 = V ar(V2j).

Thus, the variance of ∆̂ given mij can be expressed as

V ar(∆̂|mij) = Var
n∑
j=1

(ε1j − ε2j + ξ1j − ξ2j)

= V ar

n∑
j=1

(ε1j + ξ1j) + V ar

n∑
j=1

(ε2j + ξ2j)− 2Cov(
n∑
j=1

(ε1j + ξ1j),
n∑
j=1

(ε2j + ξ2j))

=
n∑
j=1

a1jw
2
1j − 2

n∑
j=1

b1jw1j +
n∑
j=1

a2jw
2
2j − 2

n∑
j=1

b2jw2j − 2
n∑
j=1

cjw1jw2j + d, (2.5)
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where

a1j =

∑m1j

l,l′=1 σ
u1u1
ll′

m2
1j

,

a2j =

∑m2j

l,l′=1 σ
u2u2
ll′

m2
2j

,

b1j =
δ1j
∑m1j

l=1 σ
u1v1
l

D1m1j

− δ2j
∑m1j

l=1 σ
u1v2
l

D2m1j

,

b2j =
δ2j
∑m2j

l=1 σ
u2v2
l

D2m2j

− δ1j
∑m2j

l=1 σ
u2v1
l

D1m2j

,

cj =

∑m1j

k

∑m2j

l σu1u2kl

m1jm2j

,

d =
σv1v1

D1

+
σv2v2

D2

− 2
σv1v2

D1D2

,

with σuiuill′ = Cov(Uijl, Uijl′), σuivil = Cov(Uijl, Vij) and σvivi = Cov(Vij, Vij).

The method of Lagrange Multiplier provides a strategy for finding the maxima or minima

of a function subject to constraints. By applying the Lagrange Multiplier Method in this case, the

optimal weights can be obtained to minimize the variance function (2.5) with constraints w1j > 0,

w2j > 0, (j = 1, · · · , n),
∑n

j=1w1j = 1 and
∑n

j=1w2j = 1. The Lagrange function is defined as

L(w11, · · · , w1n;w21, · · · , w2n;λ;µ) = V ar(∆̂|mij) + λ(1−
n∑
j=1

w1j) + µ(1−
n∑
j=1

w2j),

where λ and µ are the two Lagrange multipliers.

The partial derivatives of the Lagrange function with respect to w1j and w2j are
dL(w11,··· ,w1n;w21,··· ,w2n;λ;µ)

dw1j
= 2a1jw1j − 2b1j − 2cjw2j − λ = 0;

dL(w11,··· ,w1n;w21,··· ,w2n;λ;µ)
dw2j

= 2a2jw2j − 2b2j − 2cjw1j − µ = 0.

(2.6)

Let

Hj =


a1j −cj

−cj a2j

 , w̃j =


w1j

w2j

 , b̃j =


b1j

b2j

 ,
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and

χ̃ =


λ

µ

 ,

the system equations (2.6) can be expressed in a matrix format. That is

2Hjw̃j − χ̃− 2b̃j = 0.

We obtain:

w̃j =
1

2
H−1j (χ̃+ 2b̃j). (2.7)

Let

Ĩ =


1

1

 ,

the constraint equations can be written in the matrix format. That is

n∑
j=1

w̃j =
n∑
j=1

1

2
H−1j (χ̃+ 2b̃j) = Ĩ ,

we can solve for χ̃, which is given by

χ̃ = 2(
n∑
j=1

H−1j )−1

[
Ĩ −

(
n∑
j=1

H−1j b̃j

)]
. (2.8)

Next, plugging (2.8) into (2.7), we obtain the optimal weights as

w̃j = H−1j

( n∑
j=1

H−1j

)−1
Ĩ −

(
n∑
j=1

H−1j

)−1( n∑
j=1

H−1j b̃j

)
+ b̃j

 . (2.9)
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The optimal weights involve the unknown parameters, which can be consistently estimated

from estimated transformed data (Ûijl, V̂ij)

Ûijl = Ĝi(xijl), V̂ij = F̂i(yij),

The estimates of unknown parameters calculated from the estimated transformed data are given as

σ̂u1u1ll′ =

∑n
j=1 δ1jlδ1jl′(Û1jl − Ū1l)(Û1jl′ − Ū1l′)∑n

j=1 δ1jlδ1jl′
,

σ̂u2u2ll′ =

∑n
j=1 δ2jlδ2jl′(Û2jl − Ū2l)(Û2jl′ − Ū2l′)∑n

j=1 δ2jlδ2jl′
,

σ̂u1u2kl =

∑n
j=1 δ1jkδ2jl(Û1jk − Ū1k)(Û2jl − Ū2l)∑n

j=1 δ1jkδ2jl
,

σ̂u1v1l =

∑n
j=1 δ1jlδ1j(Û1jl − Ū1l)(V̂1j − V̄1)∑n

j=1 δ1jlδ1j
,

σ̂u1v2l =

∑n
j=1 δ1jlδ2j(Û1jl − Ū1l)(V̂2j − V̄2)∑n

j=1 δ1jlδ2j
,

σ̂u2v2l =

∑n
j=1 δ2jlδ2j(Û2jl − Ū2l)(V̂2j − V̄2)∑n

j=1 δ2jlδ2j
,

σ̂u2v1l =

∑n
j=1 δ2jlδ1j(Û2jl − Ū2l)(V̂1j − V̄1)∑n

j=1 δ2jlδ1j
,

σ̂v1v1 =

∑n
j=1 δ1j(V̂1j − V̄1)(V̂1j − V̄1)∑n

j=1 δ1j
,

σ̂v2v2 =

∑n
j=1 δ2j(V̂2j − V̄2)(V̂2j − V̄2)∑n

j=1 δ2j
,

σ̂v1v2 =

∑n
j=1 δ1jδ2j(V̂1j − V̄1)(V̂2j − V̄2)∑n

j=1 δ1jδ2j
,

where δijl = 1 if the jth subject in the ith group has the lth non-progression visit and =0 otherwise;

δij = 1 if the jth subject in the ith group has the disease progression visit and =0 otherwise;

Ūijl =
∑n

j=1 δijlÛijl/
∑n

j=1 δijl and V̄ij =
∑n

j=1 δijV̂ij/
∑n

j=1 δij and so on. The estimated optimal

weights are then obtained by plugging those estimates into (2.9). Since Ĝi(xijl) includes wij , we
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may iteratively estimate wij andGi(.) until it converges, or, to allow for a closed-form solution, we

may replace ŵij in Ĝi(xijl) with any simple weight such as wij = mij/
∑n

j′=1mij′ or wij = 1/n.

Now consider three special cases: (1) there is no within-subject correlation between any two

time points, ρu1u1 = ρu1v1 = 0 and ρu2u2 = ρu2v2 = 0. In this case, the optimal weight becomes

wij = mij/
∑n

j′=1mij′ , which means that the simple weighting scheme 1 suggested by Emir et

al. (2000) is optimal; (2) there is perfect within-subject correlation between any two time points,

ρu1u1 = ρu1v1 = 1 and ρu2u2 = ρu2v2 = 1. In this case, the optimal weight becomes wij = 1/Di

for subject j in group i who became a progressor at some time point, and wij = 0 for subject

j in group i who remained a non-progressor until the end of study, which means that the simple

weighting scheme 2 suggested by Emir et al. (2000) is not optimal unless Di = n, that is, all

subjects in both groups became progressors at some time point during the study period; (3) there

is no between-group correlation at any time point, ρu1u2 = ρu1v2 = ρu2v1 = 0. In this case, the

weights by Wu et al. (2011) are not optimal unless the number of visits and disease incidence rates

are the same in two groups.

2.4 Asymptotic variance and the relative efficiency

Let τ1 = limn→∞D1/n, and τ2 = limn→∞D2/n, so τ1 and τ2 are the disease incidence

rates in group 1 and 2 respectively. Let ∆̂1 be the estimator of ∆ using simple weighting scheme

w1j = m1j/
∑n

j′=1m1j′ and w2j = m2j/
∑n

j′=1m2j′; and ∆̂2 be the estimator of ∆ using simple

weighting scheme w1j = 1/n and w2j = 1/n. To compare our optimal estimator with ∆̂1 and ∆̂2,

we consider the asymptotic variances of ∆̂1 and ∆̂2.
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Emir et al. (2000) proved that ∆̂/

√
V ar(∆̂) is approximately normal with N(0, 1). We can

show that
√
n(∆̂1 −∆) is approximately normal with N(0, σ2

1)

σ2
1 =

E
∑m1j

l,l′=1 σ
u1u1
ll′

(Em1)2
− 2

E
∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

(Em1)(Em2)
+
E
∑m2j

l,l′=1 σ
u2u2
ll′

(Em2)2
(2.10)

−2
E
∑m1j

l=1 σ
u1v1
l

Em1

+ 2
E
∑m1j

l=1 σ
u1v2
l

Em1

− 2
E
∑m2j

l=1 σ
u2v2
l

Em2

+ 2
E
∑m2j

l=1 σ
u2v1
l

Em2

+τ−11 σv1v1 + τ−12 σv2v2 ,

where mi = 1
n

∑n
j=1mij and E is the expected value taken with respect to the random variable of

mij .

Similarly, we can also show that
√
n(∆̂2 −∆) is approximately normal with N(0, σ2

2)

σ2
2 = E

∑m1j

l,l′=1 σ
u1u1
ll′

m2
1

− 2E

∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

m1m2

+ E

∑m2j

l,l′=1 σ
u2u2
ll′

m2
2

(2.11)

−2E

∑m1j

l=1 σ
u1v1
l

m1

+ 2E

∑m1j

l=1 σ
u1v2
l

m1

− 2E

∑m2j

l=1 σ
u2v2
l

m2

+ 2E

∑m2j

l=1 σ
u2v1
l

m2

+τ−11 σv1v1 + τ−12 σv2v2 .

Let ∆̂op be the estimate of ∆ obtained by using the estimated optimal weights. We can show

that
√
n(∆̂op −∆) is approximately normal with mean 0 and variance

σ2
op =

(
Ĩ t − φ̃t

)
Σ−1

(
Ĩ − φ̃

)
− υ + τ−11 σv1v1 + τ−12 σv2v2 , (2.12)

where

φ̃ =


e1

e2

 ,
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e1 = lim
n→∞

n∑
j=1

a2jb1j + b2jcj
a1ja2j − cjcj

= τ1
−1E

m1

(∑m1j

l=1 σ
u1v1
l −

∑m1j

l=1 σ
u1v2
l

)∑m2j

l,l′=1 σ
u2u2
ll′∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
+τ2

−1E
m1

(∑m2j

l=1 σ
u2v2
l −

∑m2j

l=1 σ
u2v1
l

)∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,
e2 = lim

n→∞

1

n

n∑
j=1

a1jb2j + b1jcj
a1ja2j − cjcj

= τ2
−1E

m2

(∑m2j

l=1 σ
u2v2
l −

∑m2j

l=1 σ
u2v1
l

)∑m1j

l,l′=1 σ
u1u1
ll′∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
+τ1

−1E
m2

(∑m1j

l=1 σ
u1v1
l −

∑m1j

l=1 σ
u1v2
l

)∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,

Σ =


σ11 σ12

σ21 σ22

 ,

σ11 = lim
n→∞

1

n

n∑
j=1

a2j
a1ja2j − cjcj

= E
m1

2
∑m2j

l,l′=1 σ
u2u2
ll′∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,
σ12 = σ21 = lim

n→∞

1

n

n∑
j=1

cj
a1ja2j − cjcj

= E
m1m2

∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,
σ22 = lim

n→∞

1

n

n∑
j=1

a1j
a1ja2j − cjcj

,

= E
m2

2
∑m1j

l,l′=1 σ
u1u1
ll′∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,
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and

υ = lim
n→∞

n
n∑
j=1

a2jb
2
1j + 2b1jb2jcj + a1jb

2
2j

a1ja2j − cjcj

=
1

τ12
E

∑m2j

l,l′=1 σ
u2u2
ll′

(∑m1j

l=1 σ
u1v1
l

)2
+
∑m1j

l,l′=1 σ
u1u1
ll′

(∑m2j

l=1 σ
u2v1
l

)2∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
−2

1

τ12
E

∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

∑m1j

l=1 σ
u1v1
l

∑m2j

l=1 σ
u2v1
l∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
+

1

τ22
E

∑m1j

l,l′=1 σ
u1u1
ll′

(∑m2j

l=1 σ
u2v2
l

)2
+
∑m2j

l,l′=1 σ
u2u2
ll′

(∑m1j

l=1 σ
u1v2
l

)2∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
−2

1

τ22
E

∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

∑m1j

l=1 σ
u1v2
l

∑m2j

l=1 σ
u2v2
l∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
+2

1

τ1τ2
E

∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

(∑m1j

l=1 σ
u1v1
l

∑m2j

l=1 σ
u2v2
l +

∑m1j

l=1 σ
u1v2
l

∑m2j

l=1 σ
u2v1
l

)∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
−2

1

τ1τ2
E

∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l=1 σ
u2v2
l

∑m2j

l=1 σ
u2v1
l +

∑m2j

l,l′=1 σ
u2u2
ll′

∑m1j

l=1 σ
u1v1
l

∑m1j

l=1 σ
u1v2
l∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 .

The proofs of (2.10), (2.11) and (2.12) are included in Appendix.

Let ARE1 = σ2
op/σ

2
1 be the asymptotic relative efficiency for comparing ∆̂1 with ∆̂op, and

ARE2 = σ2
op/σ

2
2 be the asymptotic relative efficiency for comparing ∆̂2 with ∆̂op. To demonstrate

how the within-subject correlation, the between-group correlation, and the incidence of disease

affect ARE1 and ARE2, we consider a special case where variances of Uijl and Vij are homo-

geneous across visits and groups, within-subject non-progression and non-progression correlation

coefficients are homogeneous across groups, within-subject progression and non-progression cor-

relation coefficients are homogeneous across groups, and between-group correlation coefficients
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are homogeneous across visits. Specifically,

V ar(Uijl) = V ar(Vij) = σ2,

Corr(Uijl, Uijl′) = Corr(Uijl, Vij) = ρw,

Corr(Uijl, Ui′jl) = Corr(Uijl, Vi′j) = ρb, i 6= i′.

We graph ARE1 and ARE2 against ρw for three different values of ρb, ρb = 0.3, 0.5, 0.7

and three different sets of (τ1, τ2), (τ1, τ2) = (0.5, 0.5), (0.3, 0.3), (0.1, 0.1). The uniform distri-

bution of m1, P (m1 = k) = 1/6, k = 1, · · · , 6, and the distribution of m2, P (m2 = k) =

1/3, 1/3, 1/3, 0, 0, 0, were used to calculate the expectations involved in ARE1 and ARE2. Figure

2.1 shows that the efficiency gain of our optimal estimator increases dramatically as ρw increases

and (τ1, τ2) decreases, and increases as ρb increases. The loss of efficiency by using the two simple

weighting schemes instead of our optimal weights can be severe when the within-subject correla-

tion is large and the incidence of disease is small.

2.5 Simulation results

Simulations were conducted to examine the finite sample properties of the proposed weight-

ing scheme relative to the simple weight scheme 1 and the simple weight scheme 2 suggested by

Emir et al. (2000) with small sample size. In the absence of disease progression, the subjects

will have the biomarker observed every month for a total of at most six monthly visits per sub-

ject. For each pair of subjects, we generate an independent multivariate normal random vector

Xi = (X11, X12, · · · , X16, X21, X22, · · · , X26), of size 12 × n with mean vector 0 and variance-

covariance matrix Σ = (σll′)12×12 with
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σll′ =


1 if l = l′

γ if l, l′ = 1, ..., 6 or l, l′ = 7, ..., 12

λ if l = 1, ..., 6; l′ = 7, ..., 12 or l = 7, ..., 12; l′ = 1, ..., 6.

Note that (X11, X12, · · · , X16) are the observed biomarker values for the subjects in the

exposed group and (X21, X22, · · · , X26) for the matched subjects in the non-exposed group, and

that γ and λ are the parameters which introduce correlations within-subject and between-group

respectively. The values of λ and γ were chosen so that the variance-covariance matrix Σ is positive

definite.

We generate disease onset times for the subjects using an exponential distribution such that

the expected disease rates at six months in two groups are ψ1 and ψ2. If a simulated disease onset

time is greater than six months, we define the subject to be a non-progressor at all six visits and use

all six values ofXi for the biomarker. If the disease onset time occurs before six months, we assume

that the disease progession is detected clinically at the next visit. For example, if a disease onset in

the exposed group occurs between the third and fourth visit, the simulated biomarker values for the

first three visits are (x11, x12, x13). We assume the expected value of the biomarker is increased by

1 at the time of disease onset, so we define the biomarker value at this fourth visit to be Y1 = x14+1.

With this set-up for both groups, the true AUC is equal to 0.75 in both groups and the true AUC

difference of the biomarker between groups is ∆ = 0. In our simulation, we set the disease rates

to be either equal or unequal between groups using (ψ1, ψ2) = (0.5, 0.4), (0.4, 0.4), (0.2, 0.4). The

disease rates were chosen to show how the change of disease rate in any group would impact the

efficency. The correlations were either low, moderate or high, using γ = 0.3, 0.5, 0.7, 0.9 and

λ = 0.0, 0.3, 0.5, 0.7. The sample size of 50 and the sample size of 100 per group were considered
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for each combination of(λ, γ, ψ1, ψ2).

A total of 2000 simulations were replicated. The efficiency of the estimators was estimated

using the mean square error (MSE), which was computed using the variance of the parameter es-

timates and the estimated bias. Table 2.2 (n=50) and Table 2.3 (n=100) summarize the results

using the relative efficiency. The results are consistent between both sample sizes. These simula-

tions show that the estimator using optimal weights outperforms both ∆̂1 and ∆̂2 especially when

the within-group correlation is large, which is consistent with the conclusion from the asymptotic

comparisons. As well, the performance is increasing as the between-group correlation increases

and the disease incidence rate decreases. Additionally, we also compared the optimal weights to

the weights using Wu et al.’s method (2011). The results (RE3) indicate up to 20% of efficiency

gain when the between-group correlation is being taken account in the optimal weights.

2.6 Application on the thyroidism study data

The study is ongoing. The use of this data is for illustration of statistical methods only. It

does NOT represent the final outcome reporting of the ongoing study. In this illustrative example,

only 213 pairs of subjects who completed the study as 05/01/2012 and had at least one measure-

ment were included. Hypothyroidism is defined using arbitrary thresholds, with TSH greater than

2.2 mIU/L and Free T4 less than 1.76 pmol/L. The incidence rate of hypothyriodism was only 12%

in the brease cancer group and approximate 9% in health control group during the study period.

The raw values of TPOAb titers were treated as the original data of (x1jl, y1j) for the breast

cancer group and (x2jl, y2j) for the heathy control group. The optimal weights were obtained by
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Table 2.1: Results for Comparing Accuracy of TPOAb in Predicting Thyroid Function.
Optimal Weight Simple Weight 1 Simple Weight 2

Estimate -0.014 -0.031 -0.030
Variance 0.0016 0.0025 0.0023

Relative efficiency 1 0.64 0.70

following these procedures: First, obtain the estimates of Fi and Gi using simple weight 1; second,

generate the transformed data (ûijl, v̂ij); next, obtain the estimates of σuiui , σuivi and σvivi from the

transformed data; finally, plug these estimated variance-covariance parameters into (2.9) to get the

estimated optimal weights. The estimated optimal weights were then plugged into equation (2.1)

to calculate the point estimate of the two AUCs difference and plugged into (2.5) to calculate the

variance of ∆̂op. Table 2.1 summarizes both the point estimates and their variance estimates using

all three weight schemes. The optimal weight scheme outperformed the other two simple weight

schemes with a substantial gain of efficiency because the disease incidence rates were low in both

groups and the within-subject correlation was moderate to high in this study.

2.7 Concluding remarks

In previous studies, the Cox proportional hazard regression model with a time-dependent

covariant was traditionally utilized for evaluating the biomarker with repeated measurements (Cox,

1972; Kalbfleisch, 1980). However, when the samples are correlated, the Cox proportional hazard

model cannot be used. There has been an increased use of the ROC curve to examine the prognostic

performance of some continuous biomarkers with repeated measurements. A non-parametric ROC

approach, due to Emir et al. (2000) was introduced to estimate area under the ROC curve of a

repeated biomarker. We modified Emir et al.’s approach (2000) to compare the prediction accuracy
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of a biomarker between two correlated groups. When the study subjects are limited and cost is

high, the efficiency of the statistical methods is a crucial consideration when designing clinical

studies. We extended Wu et al.’s idea (2011) to provide a solution to weight optimization which

minimize the variance of AUCs comparison estimate. Our simulation results show substantial

gains of efficiency by using an optimal weighting scheme when the correlation within subject is

high, the correlation between groups is high, and/or the disease incidence rate is low. The proposed

optimal weighting scheme is generally preferred to the two weighting schemes suggested by Emir

et al. (2000). Thus, it is recommended.

This research has several limitations. First, the optimal weights could be out of boundary

when the sample size is too small. Secondly, the homogenous variance-covariance structure was

used in the simulation studies. In the future study, we may consider other more complicated

structure. The methodology presented in this paper focused on comparing the predictive accuracies

of a repeated biomarker between two correlated groups in the one to one matched-subject design

study. This methodology may be adapted to compare AUCs in matched-subject design studies

when there are more than one matches per subject. As well, the methodology can be applied to

other correlated-group design study, such as cross-over design study. Futhermore, the extension

of the proposed methodology can be used to accommodate the clustered data, such as there are

recurrent outcome events. Future research of these, based on the weighting optimization methods

described here, may produce better solutions, particularly where the efficiecy is concerned.
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2.9 Appendix

Using the fact (2.3) to prove (2.10), (2.11) and (2.12), it suffices to show that

σ2 = lim
n→∞

nV ar(∆̂).
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Proof of (2.10)

nV ar(∆̂1) = n

[
n∑
j=1

a1jw
2
1j − 2

n∑
j=1

cjw1jw2j +
n∑
j=1

a2jw
2
2j

]

−2n
n∑
j=1

b1jw1j − 2n
n∑
j=1

b2jw2j + nd

= n
n∑
j=1
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Proof of (2.11)
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Proof of (2.12) First, let w̃j = (w1j, w2j)
t, j = 1, · · · , n and rewrite (2.5) as

nV ar(∆̂) = n

[
n∑
j=1

a1jw
2
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n∑
j=1

cjw1jw2j +
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2
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t
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Using the fact:
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,

so we have
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(
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)
,
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then plug it in the variance function,

nV ar(∆̂op) = n
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Note that:
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Consequently, we arrive at
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(
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which completes the proof.
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Figure 2.1: The Effect of Within-subject Correlation Coefficient(rhow), Between-group Cor-

relation Coefficient(rhob), and the Incidence Rate of Disease(tau) on the Asymptotic Relative

Efficiencies, ARE1 (Solid Line) and ARE2 (Broken Line).
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Table 2.2: Simulation Results for AUCs Comparison (n=50)
n ψ1 ψ2 λ γ RE1 RE2 RE3

50 0.5 0.4 0.0 0.3 0.92 0.95 0.99
50 0.5 0.4 0.0 0.5 0.89 0.90 0.99
50 0.5 0.4 0.0 0.7 0.85 0.88 0.97
50 0.5 0.4 0.0 0.9 0.76 0.79 0.97
50 0.5 0.4 0.3 0.3 0.90 0.91 0.96
50 0.5 0.4 0.3 0.5 0.88 0.89 0.97
50 0.5 0.4 0.3 0.7 0.83 0.85 0.97
50 0.5 0.4 0.3 0.9 0.77 0.80 0.97
50 0.5 0.4 0.5 0.3 0.84 0.85 0.87
50 0.5 0.4 0.5 0.5 0.86 0.87 0.93
50 0.5 0.4 0.5 0.7 0.84 0.86 0.98
50 0.5 0.4 0.5 0.9 0.78 0.80 0.97
50 0.5 0.4 0.7 0.3 0.82 0.83 0.88
50 0.5 0.4 0.7 0.5 0.81 0.82 0.90
50 0.5 0.4 0.7 0.7 0.80 0.82 0.89
50 0.5 0.4 0.7 0.9 0.79 0.81 0.96
50 0.4 0.4 0.0 0.3 0.90 0.92 0.99
50 0.4 0.4 0.0 0.5 0.84 0.86 0.98
50 0.4 0.4 0.0 0.7 0.80 0.85 0.98
50 0.4 0.4 0.0 0.9 0.72 0.73 0.97
50 0.4 0.4 0.3 0.3 0.88 0.89 0.94
50 0.4 0.4 0.3 0.5 0.86 0.87 0.95
50 0.4 0.4 0.3 0.7 0.78 0.80 0.97
50 0.4 0.4 0.3 0.9 0.71 0.72 0.97
50 0.4 0.4 0.5 0.3 0.79 0.80 0.86
50 0.4 0.4 0.5 0.5 0.79 0.81 0.90
50 0.4 0.4 0.5 0.7 0.80 0.82 0.93
50 0.4 0.4 0.5 0.9 0.73 0.75 0.96
50 0.4 0.4 0.7 0.3 0.75 0.76 0.82
50 0.4 0.4 0.7 0.5 0.77 0.78 0.87
50 0.4 0.4 0.7 0.7 0.78 0.79 0.91
50 0.4 0.4 0.7 0.9 0.72 0.74 0.94

Continued on next page
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Table 2.2: Simulation Results for AUCs Comparison (n=50) (Continued)
n ψ1 ψ2 λ γ RE1 RE2 RE3

50 0.2 0.4 0.0 0.3 0.79 0.80 0.97
50 0.2 0.4 0.0 0.5 0.72 0.77 0.93
50 0.2 0.4 0.0 0.7 0.61 0.64 0.92
50 0.2 0.4 0.0 0.9 0.49 0.51 0.92
50 0.2 0.4 0.3 0.3 0.78 0.79 0.88
50 0.2 0.4 0.3 0.5 0.72 0.74 0.92
50 0.2 0.4 0.3 0.7 0.54 0.55 0.91
50 0.2 0.4 0.3 0.9 0.47 0.48 0.89
50 0.2 0.4 0.5 0.3 0.63 0.63 0.74
50 0.2 0.4 0.5 0.5 0.67 0.68 0.83
50 0.2 0.4 0.5 0.7 0.56 0.58 0.84
50 0.2 0.4 0.5 0.9 0.51 0.52 0.90
50 0.2 0.4 0.7 0.3 0.59 0.59 0.68
50 0.2 0.4 0.7 0.5 0.62 0.64 0.75
50 0.2 0.4 0.7 0.7 0.61 0.63 0.84
50 0.2 0.4 0.7 0.9 0.43 0.44 0.82
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Table 2.3: Simulation Results for AUCs Comparison (n=100)
n ψ1 ψ2 λ γ RE1 RE2 RE3

100 0.5 0.4 0.0 0.3 0.83 0.86 0.99
100 0.5 0.4 0.0 0.5 0.78 0.79 0.98
100 0.5 0.4 0.0 0.7 0.74 0.76 0.98
100 0.5 0.4 0.0 0.9 0.71 0.74 0.97
100 0.5 0.4 0.3 0.3 0.82 0.84 0.95
100 0.5 0.4 0.3 0.5 0.77 0.79 0.96
100 0.5 0.4 0.3 0.7 0.71 0.75 0.95
100 0.5 0.4 0.3 0.9 0.68 0.70 0.92
100 0.5 0.4 0.5 0.3 0.78 0.82 0.84
100 0.5 0.4 0.5 0.5 0.76 0.78 0.86
100 0.5 0.4 0.5 0.7 0.69 0.73 0.82
100 0.5 0.4 0.5 0.9 0.65 0.68 0.81
100 0.5 0.4 0.7 0.3 0.75 0.81 0.83
100 0.5 0.4 0.7 0.5 0.71 0.75 0.85
100 0.5 0.4 0.7 0.7 0.67 0.70 0.80
100 0.5 0.4 0.7 0.9 0.62 0.69 0.82
100 0.4 0.4 0.0 0.3 0.82 0.84 0.99
100 0.4 0.4 0.0 0.5 0.78 0.82 0.99
100 0.4 0.4 0.0 0.7 0.70 0.80 0.98
100 0.4 0.4 0.0 0.9 0.68 0.73 0.96
100 0.4 0.4 0.3 0.3 0.80 0.82 0.95
100 0.4 0.4 0.3 0.5 0.76 0.79 0.92
100 0.4 0.4 0.3 0.7 0.69 0.74 0.91
100 0.4 0.4 0.3 0.9 0.67 0.71 0.89
100 0.4 0.4 0.5 0.3 0.73 0.78 0.88
100 0.4 0.4 0.5 0.5 0.70 0.76 0.85
100 0.4 0.4 0.5 0.7 0.65 0.69 0.83
100 0.4 0.4 0.5 0.9 0.61 0.64 0.84
100 0.4 0.4 0.7 0.3 0.65 0.75 0.85
100 0.4 0.4 0.7 0.5 0.61 0.70 0.82
100 0.4 0.4 0.7 0.7 0.59 0.66 0.81
100 0.4 0.4 0.7 0.9 0.52 0.59 0.80

Continued on next page
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Table 2.3: Simulation Results for AUCs Comparison (n=100) (Continued)
n ψ1 ψ2 λ γ RE1 RE2 RE3

100 0.2 0.4 0.0 0.3 0.62 0.72 0.97
100 0.2 0.4 0.0 0.5 0.59 0.65 0.97
100 0.2 0.4 0.0 0.7 0.51 0.56 0.96
100 0.2 0.4 0.0 0.9 0.44 0.52 0.95
100 0.2 0.4 0.3 0.3 0.61 0.70 0.88
100 0.2 0.4 0.3 0.5 0.55 0.64 0.85
100 0.2 0.4 0.3 0.7 0.50 0.54 0.81
100 0.2 0.4 0.3 0.9 0.44 0.48 0.79
100 0.2 0.4 0.5 0.3 0.61 0.65 0.82
100 0.2 0.4 0.5 0.5 0.60 0.62 0.84
100 0.2 0.4 0.5 0.7 0.55 0.51 0.81
100 0.2 0.4 0.5 0.9 0.42 0.49 0.80
100 0.2 0.4 0.7 0.3 0.58 0.59 0.72
100 0.2 0.4 0.7 0.5 0.53 0.54 0.76
100 0.2 0.4 0.7 0.7 0.49 0.50 0.74
100 0.2 0.4 0.7 0.9 0.41 0.44 0.79
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Chapter 3

Prognostic Performance of Metabolic
Indexes in Predicting Onset of Type 1
Diabetes

The non-parametric area estimation and comparisons are most commonly used in practice

due to its simplicity. Here I will apply Delong’s method on a Type 1 Diabetes biomarker research.

The application in this section is published by the peer review journal Diabetes Care (Xu et al.,

2010).

Copyright 2010 American Diabetes Association From Diabetes Care, Vol. 33, 2010; 2508−

2513. Reprinted by permission of the American Diabetes Association.

3.1 Introduction

Early disease prediction and prevention is one of the most important strategies in health

care. Preventative care can substantially decrease mortality and morbidity and significantly reduce

public health costs (1-2). As genetic/familial factors and auto-immune factors have become avail-

able to screen subjects for the risk of developing type 1 diabetes, early intervention trials for this
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disease have become a reality (3-7). The characterization of this risk may be refined by additional

factors to more precisely target individuals who would benefit from preventative treatment. To

most accurately select individuals who are at risk for developing disease, beyond screening for an-

tibodies and genetic factors, metabolic risk indicators are being investigated for the development

of a more effective clinical prognostic index (8-12). The principal metabolic indexes currently

being evaluated as prognostic indicators for type 1 diabetes have been focused on measurements

from oral glucose tolerance tests (OGTTs) and intravenous glucose tolerance tests (IVGTTs). Pre-

vious research from DPT-1 has indicated that some metabolic indexes derived from OGTT provide

substantial predictive value in receiver operating characteristic area under the curve (ROCAUC)

analysis (13). IVGTT derived indexes, such as FPIR, HOMA-IR, and FPIR/HOMA-IR have also

demonstrated prognostic value (14-16). However, indexes from both methods have not been com-

pared for predictive accuracy in moderate risk subjects who are antibody positive and have genetic

risk factors, but do not have impaired glucose tolerance. As subjects in this population who would

progress to disease are in an early stage of disease progression, they are an important subgroup to

target for preventative intervention. If OGTT or IVGTT measurements produce superior predictive

indexes compared to one another, future trials can reduce costs by relying on a single method of

measurement that produces the greatest predictive accuracy.

In addition to determining the superior testing method of producing predictive indexes

(OGTT versus IVGTT) there also remains a need to produce effective prognostic thresholds to

select between individuals who will progress to disease and who will not, as screening for famil-

ial, genetic, and immunoglobin risk factors are not precise enough to accurately select subjects,

particularly for those at an early stage of disease progression who do not exhibit impaired glucose

53



www.manaraa.com

tolerance. Future intervention trials will depend on a refined selection tool to choose subjects for

early intervention to ensure an accurate characterization of treatment effects. Optimal cut-off val-

ues derived from ROCAUC analysis from metabolic indexes would provide valuable guidance for

clinicians and researchers in evaluating patient risk for progressing to type 1 diabetes by providing

a threshold, above which the risk is characterized with greater precision than is provided by their

underlying risk factors.

In this investigation, we assessed the prognostic accuracy of nine metabolic indexes for pre-

dicting the progression to clinical onset of type 1 diabetes over a five year period using the data

from Diabetes Prevention Trial-Type 1 (DPT-1). The optimal cut-off values of metabolic indexes

were determined to provide previously unavailable guidance to clinicians and researchers in se-

lecting patients likely to progress to disease, who are therefore candidates for early preventative

intervention.

3.2 Subjects and methods

The Diabetes Prevention Trial-Type 1 (DPT-1) was a longitudinal study in North America,

which was designed to determine if Type 1 Diabetes can be prevented or delayed by preclinical

intervention of oral insulin supplement. DPT-1 screened for ICA-positive subjects in 103, 390 first-

and second-degree nondiabetic relatives of individuals in whom type 1 diabetes had been diagnosed

before the age of 45 years. The 3, 483 relatives positive for islet-cell antibodies (ICA) were staged

to quantify the projected 5-year risk of diabetes (17). Staging consisted of ICA confirmation,

HLA-DQ typing, determination of IAA autoantibody, IVGTT and OGTT.
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A total of 372 subjects whose 5-year risk was considered to be 25 to 50 without metabolic

abnormality or loss of first phase insulin response (defined as moderate risk), were entered into

the DPT-1 oral insulin trial. To study the natural history of the disease, the current investigation

evaluated 186 subjects who were randomized to the placebo arm of the study.

All subjects were examined every six months from enrollment until diabetes onset or study

end after randomization. All subjects (and/or their parent) signed a written consent form approved

by the participating study center’s human subjects committee.

3.3 Laboratory measurements

An intravenous glucose tolerance test was performed after an overnight fast. The IV-GTT

was done as recommended by the ICARUS study group. This includes instructions for a diet

containing at least 150 g of carbohydrate per day for the 3 days before the test. Blood samples

for determination of glucose and insulin levels were drawn at -10 and -4 minutes. A solution of

25 dextrose (0.5 g/kg body weight up to a maximum of 35 g) was then infused over 3 minutes (

15 seconds). Repeat blood samples for determination of glucose and insulin levels were drawn

at 1, 3, 5, 7, and 10 minutes after the glucose infusion. FPIR was calculated as the sum of the

serum insulin concentrations at 1 and 3 minutes after intravenous injection of glucose. FPIR was

above threshold if ≥ 10th percentile for siblings, offspring, and second-degree relatives (≥ 100

U/ml if age ≥ 8 years; ≥ 60 U/ml if age < 8 years) and ≥ 1st percentile for parents (≥ 60 U/ml).

These thresholds were determined from the Gainesville, Florida Family Study and a general school

population study (18). FPIR above threshold was required for eligibility. HOMA-IR was calculated
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as the fasting insulin (mU/L) x fasting glucose (mmol/L)/22.5 from the mean of fasting insulin at

4 and 10 minutes and fasting glucose at 4 minutes before each IVGTT performed.

Oral glucose tolerance tests (OGTT) were administered to assess glycemic status. The dose

of oral glucose was 1.75 g per kilogram (maximum, 75 g of carbohydrate). Blood samples were

obtained for C-peptide measurements in the fasting state, and then 30, 60, 90 and 120 minutes after.

Peak C-peptide was the maximum point of all measurements. The AUC C-peptide was calculated

using Trapezoid’s rule. A normal OGTT during staging was required for eligibility.

Diabetes was diagnosed according to the American Diabetes Association (ADA) criteria:

fasting glucose ≥ 126 mg/dl; two-hour glucose ≥ 200 mg/dl with confirmation by either an el-

evated fasting or two-hour glucose level at a follow-up visit; or random plasma glucose ≥ 200

mg/dl accompanied by symptoms of polyuria, polydipsia, and /or weight loss (19).

3.4 Data analysis

For baseline characteristics, categorical variables were compared by Pearson’s chi-squared

test, and continuous variables were evaluated by t-test for the differences in means or by Wilcoxon

rank sum test for differences in order between progressors and non-progressors. Receiver operat-

ing characteristic (ROC) curves were used to compare the discriminative power of nine different

metabolic indexes to predict progression to type 1 diabetes. The global performance of each mea-

surement in predicting progression to type 1 diabetes was summarized by the area under the curve

(AUC) and results are presented as the mean and 95% confidence interval. Confidence intervals

that exclude 0.5 were considered to indicate significant results (20). Areas under the ROC curves

56



www.manaraa.com

were compared using the algorithm suggested by Delong et al. 1988, which is a nonparametric

approach to the analysis of areas under correlated ROC curves by using the theory on generalized

U-statistics to generate an estimated covariance matrix (21). The ROC curve is constructed by

varying the cut point used to determine which values of the observed variable will be considered

abnormal and then plotting the resulting sensitivities against the corresponding false positive rates

(1-specificity). The optimal cut-off points are the values yielding maximum sums of sensitivity and

specificity from the ROC curves. The Cox proportional hazard model was utilized to calculate the

hazard ratio. The log-rank test was used for survival curves comparison. Analyses were performed

by using SAS version 9.2 (SAS Institute Inc., Cary, NC) software.

3.5 Results

A summary of clinical and metabolic characteristics comparing those who progressed to

clinical disease onset and those who did not are shown in Table 3.1. By design, subjects were

ICA and IAA positive with a normal FPIR and normal glucose tolerance (n=186) giving them a

projected risk of 25-50 for progression to clinical diabetes over five years. The actual risk was 35

over 5 years. The subjects were followed for a median of 1,213 days (3.3 years; interquartile range

726-1718). Annual rate of loss to follow-up was 0.2. The subjects who were lost to follow-up

before the end of the study were considered to be non-progressors. The progressors and non-

progressors did not significantly differ in age, sex, race, or relationship to the proband.

The areas under the ROC curves (AUCs) of various metabolic indexes for the prediction of

progression to type 1 diabetes are summarized in Table 3.2. Fasting glucose from both IVGTT and
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OGTT performed poorly and did not demonstrate prognostic ability with the same AUC value of

0.49 (0.40-0.59). A nalysis of IVGTT fasting insulin demonstrated some prognostic value with an

AUC value of 0.59 (0.5 - 0.68) though the estimate had borderline significance. The AUC estimate

of HOMA-IR and FPIR exceeded 0.5, though the lower confidence limit for both variables fell

slightly below 0.5 at 0.49 and 0.48 respectively, rendering them non-significant predictors. How-

ever, when the ratio of FPIR/HOMA-IR was analyzed, it resulted in AUC value of 0.66 (0.57-0.74),

representing the best index among the indexes derived from IVGTT. The only statistically signif-

icant AUC among the standard indexes derived from OGTT testing was two-hour glucose, which

yielded the greatest AUC value of all examined metabolic indexes at 0.67 (0.59-0.76). A com-

posite index that included AUC glucose and peak c peptide was developed, using the proportional

hazard model [index = 3.54 104 x (AUC glucose) - 0.15 x (peak c-peptide)]. The ROCAUC result

for the OGTT composite index was 0.71 (0.63-0.79). Although higher than the FPIR/HOMA-IR

and the two-hour glucose, the differences were not significant (p=0.68; p=0.64). The prediction

performance of antibody titers was evaluated for comparison. AUCs for ICA titer and IAA titer

were 0.69 (0.61-0.77), 0.67 (0.58-0.76) respectively. They did not provide better prediction than

two-hour glucose or FPIR/HOMA-IR (P¿0.05) in this population. The cut-off values for optimal

prediction of progression to type 1 diabetes using ROC analysis for all metabolic indexes are sum-

marized in Table 3.2 Although FPIR demonstrated high sensitivity (0.76) at the optimal cut-off

value, the low specificity (0.40) diminishes FPIR as a useful prognostic index. Optimal cut-off val-

ues for fasting insulin and AUC C-peptide also had high positive predictive ability with sensitivities

greater than 0.80, but were lacking in specificity similar to FPIR, which restricts them from be-

ing useful prognostic indexes in this moderate risk group. FPIR/HOMA-IR and two-hour glucose

OGTT produced cut-off values with both sensitivity and specificity levels above 0.6, demonstrating
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the greatest potential as prognostic indexes compared to all other metabolic indexes. The positive

predictive value (PPV) was 0.46 and 0.41 for two-hour glucose and FPIR/HOMA-IR, respectively.

The negative predictive value (NPV) was 0.83 for both indexes. The optimal cut-off value of 114

mg/dL for OGTT two-hour glucose was notably less than the value currently used to define the

lower range of impaired glucose tolerance (140 mg/dL). The hazard ratio for those with two-hour

glucose equal to or in excess of the optimal cut-off value (114) compared to those under the opti-

mal cut-off was 2.96 (1.67-5.22) after adjusting for age, gender and BMI. The 5-year risk for those

with baseline values equal to or over the optimal two-hour glucose cut-off level was 46 compared

to 17 for those with baseline values under the optimal cut-off. Kaplan-Meier curves (Figure 3.2

3.3) illustrate the risk of diabetes over the study period by the level of OGTT two-hour glucose (P

< 0.001) and the level of IVGTT FRIR/HOMA-IR (P < 0.001).

3.6 Discussions and conclusions

The comprehensive baseline data from DPT-1 has provided the opportunity to assess and

validate the accuracy of metabolic risk indicators in predicting the future development of type 1

diabetes. Elevated fasting glucose and substantially impaired glucose tolerance are the primary

metabolic indicators currently used to identify those with significant risk for progressing to type 1

diabetes; however, these indicators cannot be used to effectively predict disease progression among

individuals who had not demonstrated gross metabolic abnormality. In order to generate accurate

prognostic indexes for those with such moderate risk factors, the current investigation evaluated

nine metabolic indicators for their prediction accuracy among those with the following underlying
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risk factors: ICA/IAA-positive relatives of those diagnosed with type 1 diabetes who were not

classified as having impaired glucose tolerance. The results of this investigation identified two

metabolic indicators as having a significant predictive accuracy for identifying individuals likely

to progress to clinical onset of type 1 diabetes within 5 years: FPIR/HOMA-IR and two-hour

postprandial glucose.

Investigations into the progression of type 2 diabetes have shown that insulin resistance is

demonstrated long before overt diabetes is diagnosed, and that this can be a powerful predictor

of disease progression (20-23). Abdul-Ghani et al. 2007 investigated the prognostic performance

of insulin secretion/insulin resistance indexes using ROC analysis to determine their predictive

accuracy for progression to type 2 diabetes and reported that insulin secretion/insulin resistance

is the best predictor of type 2 diabetes demonstrated by substantial sensitivity and specificity

(20). In the current investigation, the role of insulin resistance is also implied from the analysis

of FPIR/HOMA-IR, which demonstrated significant predictive accuracy in the study population,

with an AUC cut-off point that maintained 0.68 sensitivity and 0.61 specificity for detecting pro-

gression to clinical onset. The etiological significance of this observation is the indication that

the early stages of type 1 diabetes may be demarcated by a disturbance in the balance between

insulin response and insulin activity, though the effects of an insulin secretion/insulin resistance

disturbance may be more subtle in type 1 diabetes progression (24). The counter-regulatory hor-

mones associated with puberty may play a role in the modulation of insulin secretion and insulin

resistance during this developmental period (24-25).

The clinical utility of FPIR/HOMA-IR must be considered in the context of the predictive

accuracy found in a standard index derived from OGTT, a test that is both less burdensome to the
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patient, and in some instances, may be administered at lower cost. FPIR/HOMA-IR is actually a

composite of three measures: two from IVGTT to determine FPIR and a fasting status measure-

ment to determine HOMA-IR. In contrast, the relatively simplistic two-hour postprandial glucose

test from OGTT maintained the largest area under the ROC curve, and the greatest degree of both

sensitivity and specificity at the optimal cut-off value compared to all other metabolic indicators

evaluated in this investigation. As well, when compared at the same negative predictive value, two-

hour glucose retained a higher estimated positive predictive value than FPIR/HOMA-IR, though

this difference was not statistically significant. However, since HOMA-IR does not require IVGTT,

future research may indicate that insulin resistance can be incorporated as a part of a composite to

increase predictive value.

OGTT is the gold standard method to diagnose type 1 diabetes diagnosis and impaired glu-

cose tolerance. A standard two-hour glucose tolerance test contributes substantial predictive accu-

racy beyond screening for the underlying risk factors. This result is consistent with the findings

by Sosenko et al., who determined the accuracy of two-hour glucose was 0.66 for the combined

study population of subjects with and without impaired glucose tolerance at baseline (13). The

prognostic accuracy of this index is likely due to two-hour glucose being influenced by insulin

production and insulin resistance, two important factors that modulate the progression of this dis-

ease. This is evidenced by an observed level of prognostic accuracy similar to FPIR/HOMA-IR.

As a principal objective of this investigation was to examine metabolic indexes to provide clini-

cal guidance for selecting individuals at high risk for progression to disease despite the absence

of clinical metabolic abnormality, we have determined the optimal cut-off point for the metabolic

index with the largest area under the ROC curve, two-hour glucose at 114 mg/dL. This threshold
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derived from standard OGTT diagnostics may provide cost effective guidance for clinicians and

researchers for selecting patients likely to progress to disease if not provided preventative care,

even among those presenting with normal glucose tolerance, in future prevention trials.

This investigation contributes to a growing body of evidence that metabolic indexes derived

from OGTT testing are the most efficient and effective analytical method of determining the risk

for progression to type 1 diabetes in those with known genetic and autoimmune risk factors(9, 13).

Measurements from OGTT are the clinical standard for diagnosing impaired glucose tolerance and

clinical diabetes, and are therefore a necessary component in evaluating subjects for type 1 dia-

betes. In the absence of superior predictive value from indexes produced by IVGTT measurements,

IVGTT essentially replicates the results from OGTT measurements. Future intervention trials may

consider eliminating IVGTT measurements as an effective cost reduction strategy.

The success of preventative medicine is dependent on accurately identifying patients with

risk for disease development at an early stage of disease progression. In this investigation, we

analyzed the prediction accuracy of nine common and novel metabolic indicators for identifying

patients with moderate risk factors, yet display no clinical metabolic abnormality, who progress

to type 1 diabetes within 5 years. Both FPIR/HOMA-IR from IVGTT and two-hour glucose from

OGTT provided significant prognostic value. The standard OGTT index of two-hour glucose is

preferred because it achieved the largest prognostic accuracy in predicting disease onset, making

FPIR/HOMA-IR a redundant, and unnecessary, predictive index. As well, our findings confirm

prior DPT-1 findings that accuracy for selecting at risk patients could be improved by utilizing

two-hour glucose values below the current cutoff for impaired glucose tolerance.

Future analysis should focus on the combination of metabolic biomarkers, immunological
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biomarkers and/or genetic biomarkers in order to improve the modest positive predictive values

derived from solitary predictors. Our results indicated that autoantibody titers may not provide a

cost/benefit improvement over OGTTs as a sole predictor, but they may be an important compo-

nent of a composite modeled score. This is a secondary analysis of DPT-1 data with the sample

size limited to the placebo arm of the oral insulin protocol. Nonetheless, it provides much needed

guidance for clinicians and researchers for selecting subjects in future prevention trials in popu-

lations with underlying risk factors and clinically normal glucose tolerance by providing both the

evidence for a preferred index and a threshold for selection.
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Table 3.1: Clinical and Metabolic Characteristics of the Study Subjects.
Characteristic: Progressor Non-progressor P value
n(%) 53(28) 133(72)
Age-yr (median) 9.78(6.35) 12.79(9.23) 0.67
BMI Z-score (median) * -0.67(-1.56-0.53) -1.10(-2.61- 0.33) 0.07
Race n(%) 0.64
White 47(88.68) 116(89.23)
African American 0(0.00) 2(1.54)
Hispanic 4(7.55) 10(7.69)
Other 2(3.77) 2(1.54)
Gender n(%) 0.53
Male 28(52.83) 77(57.89)
Female 25(47.17) 56(42.11)
Relationship to proband n (%) 0.09
Sibling 36(67.92) 72(54.14)
Offspring 15(28.30) 38(28.57)
Parent 1(1.89) 6(4.51)
Second Degree 1(1.89) 17(12.78)
Immunological factors:
ICA titer (JDF Units**) (median) 160.00(80.00-320.00) 80.00(20.00-160.00) 0.01
IAA titer (nU/ml) (median) 385.10(125.40-672.00) 156.70(73.70-343.00) 0.01
ICA512 antibodies n (%) 0.01
Positive 32(64.00) 50(42.37)
Negative 18(36.00) 68(57.63)
GAD antibodies n (%) 0.67
Positive 38(76.00) 86(72.88)
Negative 12(24.00) 32(27.12 )
Metabolic factors:
Fasting Glucose (mmol/L)–IV 87.66(9.54) 87.12(9.18) 0.67
Fasting Insulin (mU/L)–IV 17.02(10.07) 14.84(9.50) 0.17
FPIR (l/ml)–IV 145.22(80.49) 163.90(105.84) 0.20
HOMA-R– IV 3.79(2.69) 3.25(2.20) 0.16
FPIR/HOMA-R– IV 44.28(19.20) 59.93(36.58) 0.01
Fasting Glucose (mg/dL) – OG 86.26(7.69) 86.18(7.85) 0.95
Two-hour Glucose (mg/dL) – OG 113.25(18.71) 102.75(19.17) 0.01
Peak C-Peptide (nmol/L) – OG 5.09(1.98) 5.59(2.26) 0.16
AUC C-Peptide(nmol/L) – OG 472.13(172.51) 523.96(21.698) 0.12

Note:Data are mean ( SD), n (%), or median (Inter-quartile range).
*BMI Z-score from 2000 CDC Growth chart.
**JDF denotes Juvenile Diabetes Foundation.
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Table 3.2: AUC, Specificity, Sensitivity, PPV and NPV at the Optimal Cut-off Value.
Index/testing AUC(95% CI) Optimal cutoff Sen Spe PPV NPV
Fasting Glucose (IV) 0.49 (0.40 - 0.59) 96 0.23 0.88 0.46 0.74
Fasting Insulin (IV) 0.59 (0.50 - 0.68) 10.23 0.82 0.29 0.32 0.80
FPIR (IV) 0.57 (0.48 -0.66) 156 0.76 0.4 0.34 0.81
HOMA-IR (IV) 0.58 (0.49 - 0.67) 2.64 0.66 0.48 0.33 0.77
FPIR/HOMA-IR (IV) 0.66 (0.57 - 0.74) 49.22 0.68 0.61 0.41 0.83
Fasting Glucose (OG) 0.49 (0.40 - 0.59) 88 0.47 0.56 0.27 0.7
Two-hour Glucose (OG) 0.67 (0.59 - 0.76) 114 0.62 0.71 0.46 0.83
Peak C-Peptide (OG) 0.56 (0.47 - 0.66) 5.3 0.7 0.46 0.34 0.79
AUC C peptide (OG) 0.56 (0.47 - 0.65) 595 0.81 0.31 0.33 0.8

Note:AUCs of Two-hour Glucose and FPIR/HOMA-IR are significant better than AUC’s fasting
glucose derived from IVGTT(IV) or OGTT(OG) (p ≤ 0.01).
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Figure 3.1: ROC Curves for Various Metabolic Indexes. 

(black circle=2-hour glucose--OGTT; white circle=FPIR; 

white triangle= FPIR/HOMA-IR;  white square=HOMA-IR) 
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Figure 3.2:  Kaplan-Meier Curves by the Level of OGTT 2-hour Glucose. 

(solid line= 2-hour glucose < 114; broken line=2-hour glucose ≥114); 

 

Figure 3.3: Kaplan-Meier Curves by the Level of IVGTT FPIR/HOAM-IR. 

(solid line= FPIR/HOAM-IR < 49.22; broken line=FPIR/HOM-IR ≥49.22); 
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Chapter 4

Concluding Remarks and Future Research

4.1 Summary and conclusions

In the first section, I have reviewed the definition of biomarker in health research field, ex-

plained some of the biological, pathological and physiological reasons why thorough evaluation

is necessary, and discussed the common methods of evaluating the qualitative and/or quantitative

biobiomarkers. Next, the receiver operating characteristics (ROC) curve, a particular statistical

technique for evaluating the overall diagnosis/prognosis accuracy of continuous biomarkers was

introduced. The basic probability theory that would be used to explain existing ROC statistics

and underpinning the novel methods was presented in this section. Lastly, the literature on eval-

uation of repeated biobiomarker was reviewed. The non-parametric AUC statistics as a measure

of diagnostic/prognostic accuracy for the repeated biobiomarker was described and how it was an

improvement as it comparing to traditional statistics, which only measures association.

In Section 2, a proposed manuscript was presented regarding methodological development.

In this manuscript, the non-parametric approach for comparison of AUCs proposed by Emir et al.
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(2000) was modified to compare AUCs between the correlated groups. The optimization of weights

using the Langrage multiplier method was demonstrated. The asymptotic relative efficiencies were

obtained. The optimal weight scheme achieved the substantial gain of efficiency, comparing to the

two simple weighting schemes. The finite sample performance of the estimators was compared

through simulation studies. The results were consistent with the theoretical results. The results

also revealed the loss of the efficiency if we ignore the correlated group design and use the calcu-

lation procedure by Wu et al. (2011). It has been shown how this methodology can be applied on a

matched case-control study. In conclusion, the efficiency using the new optimal weight scheme for

comparing the non-parametric AUCS in the correlated studies increases as the between-group cor-

relation increases, and/or within-subject correlation increases, and/or the incidence rate of disease

decreases. Thus, it is recommended.

In Section 3, an application manuscript was presented. It demonstrated application of the

non-parametric methods for AUC comparisons on a type 1diabetes research. The research con-

cluded that the combination of metabolic biomarkers, binary immunological biomarkers and/or

genetic biomarkers can improve the modest predictive accuracies derived from solitary predictors.

The results also indicated that autoantibody titers may not provide a cost/benefit improvement over

OGTTs as a sole predictor, but they may be an important component of a composite modeled score

among the subjects who have had the detectable autoimmunity but have not yet have the impaired

glucose and/or first phase insulin secretion. It provided much needed guidance for clinicians and

researchers for selecting subjects in future prevention trials in populations with underlying risk

factors and clinically normal glucose tolerance by providing both the evidence for a preferred

biobiomarker and a threshold for selection.
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4.2 Future research

In the recent years, more and more correlated study designs have been used in the clini-

cal studies due to the increased power. So developing the methodology to evaluate biomarker in

the correlated group studies is important. Benefits include, but not limited to: (i) More elective

diagnostic/prognostic measures for early detection of disease in a screening program; especially

important when the disease are curable at only early stages. (ii) Derivation of optimal testing in-

tervals for screening strategy plan. (iii) Earlier detection of disease ocurrence while monitoring

patients in a treatment trial. (iv) Improvement of the efficiency of designs of epidemiologic and

clinical studies, by using the methodology to aid the identification of high risk patients for inclu-

sion in the study population. (v) Improvement of the efficiency of comparative treatment trials by

use of potential biomarker as surrogate response variables or intermediate end point variables.

The methodology presented in this dissertation focused on comparing the predictive accu-

racies of biomarker between two correlated groups in the one to one matched case-control study

design. There are three main areas for future work. First, the methodology can be extended to

other correlated study design, such as cross-over study design, N-of -1 study design. As well, the

methodology can be further modified to the matched case-control studies where there is more than

one matched control per case;

Secondly, an alternative summary statistic that is often used is the partial area under the

ROC curve. In theory, the approach could be applied to this summary statistic although several

issues need to be addressed. The partial AUC is rather sensitive to heterogeneity. Comparisons

between groups are more difficult, especially if an empirical truncation process is used. Moreover,
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the partial area lacks a useful symmetry property that the full AUC has. Although some work has

been done addressing the comparison of partial ROC curves (Jiang et al., 1996; Dodd et al., 2003;

Walter, 2005), the statistical methodology has been much less developed than for full AUCs under

ROC curves.

Other directions of future research include extension of the proposed methodology to ac-

commodate the multiple-comparison setting, a commonly used design in which the conditions of

biomarker need to be evaluated using different modalities. Additionally, the methodology can be

adapted to analyze the clustered data, such as when there are recurrent outcome events. Future re-

search of these, based on the novel weighting optimization methods described here, may produce

better solutions, particularly where small sample sizes are concerned.
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Appendix A: R/S-PLUS codes for comparing AUCs between correlated groups. 

 

Following are the R/S-PLUS codes that were needed for comparing the prognostic 

accuracy of repeated biomarker between two correlated groups for the manuscript in 

Section Two. 

 

##compute the optimal weights## 

weight.fun<-function(x1mat,x2mat,y1vec,y2vec, x1deltamat, 

x2deltamat,y1deltavec,y2deltavec) 

  {  

  n <- nrow(x1mat) 

  r1 <- ncol(x1mat) 

  r2 <- ncol(x2mat) 

  D1 <- sum(y1deltavec) 

  D2 <- sum(y2deltavec) 

  y1vec1 <- y1vec[y1deltavec == 1] 

  y2vec1 <- y2vec[y2deltavec == 1] 

  x1long <- rep(x1mat, D1) 

  x2long <- rep(x2mat, D2) 

  y1long <- rep(y1vec1, rep(n * r1, D1)) 

  y2long <- rep(y2vec1, rep(n * r2, D2)) 

  xyarray_1 <- array(ifelse(x1long - y1long<= 0,1, 0), dim = c(n, r1, D1)) 

  xyarray_2 <- array(ifelse(x2long - y2long<= 0,1, 0), dim = c(n, r2, D2)) 

  x1deltalong <- rep(x1deltamat, D1)  

  x2deltalong <- rep(x2deltamat, D2)  

  y1deltalong <- rep(rep(1, D1), rep(n * r1, D1)) 

  y2deltalong <- rep(rep(1, D2), rep(n * r2, D2)) 

  xydeltaarray_1 <- array(x1deltalong * y1deltalong, dim = c(n, r1, D1)) 

  xydeltaarray_2<- array(x2deltalong * y2deltalong, dim = c(n, r2, D2)) 

  xyarray1_1 <- array(ifelse(x1long - y1long> 0,1, 0), dim = c(n, r1, D1)) 

  xyarray1_2 <- array(ifelse(x2long - y2long> 0,1, 0), dim = c(n, r2, D2)) 

  m1.vec <- apply(x1deltamat, 1, sum)   

  m2.vec <- apply(x2deltamat, 1, sum) 

  w1.vec<-m1.vec/sum(m1.vec)  

  w2.vec<-m2.vec/sum(m2.vec)  

  wmarray_1 <- array(rep(rep(w1.vec/m1.vec, r1), D1), dim = c(n, r1, D1)) 

  wmarray_2 <- array(rep(rep(w2.vec/m2.vec, r2), D2), dim = c(n, r2, D2)) 

  u1mat <- apply(xyarray1_1, c(1, 2), sum)/sum(y1deltavec)  

  u2mat <- apply(xyarray1_2, c(1, 2), sum)/sum(y2deltavec) 

  v1vec <- apply(xyarray_1 * wmarray_1 * xydeltaarray_1, c(3), sum) 

  v2vec <- apply(xyarray_2 * wmarray_2 * xydeltaarray_2, c(3), sum) 

  v1vec1<-replace(y1deltavec,y1deltavec>0,v1vec) 

  v2vec1<-replace(y2deltavec,y2deltavec>0,v2vec) 

  u1deltamat<- x1deltamat 

  u2deltamat<- x2deltamat 

 v1deltavec<- y1deltavec 
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 v2deltavec<- y2deltavec 

temp<-cov(cbind(v1vec1*v1deltavec,v2vec1*v2deltavec)) 

rv1hat<-temp[1,1] 

rv2hat<-temp[2,2] 

rhov1v2hat<-temp[1,2] 

p<-ncol(u1mat) 

ru1u1hat<-matrix(rep(0,p^2),ncol=p) 

rhou1u1hat<-matrix(rep(0,p^2),ncol=p) 

      for(i in 1:p){ 

  for(j in 1:p){ 

  temp<-matrix(c(u1mat[u1deltamat[,i]*u1deltamat[,j]==1,i], 

u1mat[u1deltamat[,i]*u1deltamat[,j]==1,j]),ncol=2) 

  ru1u1hat[i,j]<-var(temp)[1,2] 

  rhou1u1hat[i,j]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

  } 

  } 

p<-ncol(u2mat) 

ru2u2hat<-matrix(rep(0,p^2),ncol=p) 

rhou2u2hat<-matrix(rep(0,p^2),ncol=p) 

for(i in 1:p){ 

  for(j in 1:p){ 

temp<-matrix(c(u2mat[u2deltamat[,i]*u2deltamat[,j]==1,i], 

u2mat[u2deltamat[,i]*u2deltamat[,j]==1,j]),ncol=2) 

ru2u2hat[i,j]<-var(temp)[1,2] 

rhou2u2hat[i,j]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

} 

} 

p<-ncol(u1mat) 

ru1u2hat<-matrix(rep(0,p^2),ncol=p) 

rhou1u2hat<-matrix(rep(0,p^2),ncol=p) 

for(i in 1:p){ 

  for(j in 1:p){ 

temp<-matrix(c(u1mat[u1deltamat[,i]*u2deltamat[,j]==1,i], 

u2mat[u1deltamat[,i]*u2deltamat[,j]==1,j]),ncol=2) 

ru1u2hat[i,j]<-var(temp)[1,2] 

rhou1u2hat[i,j]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

} 

} 

ru1v1hat<-c(rep(0,p-1),0) 

rhou1v1hat<-c(rep(0,p-1),0) 

for(i in 1:(p-1)) 

{ 

temp<-

matrix(c(u1mat[u1deltamat[,i]*v1deltavec==1,i],v1vec1[u1deltamat[,i]*v1deltavec==1]),

ncol=2) 

ru1v1hat[i]<-var(temp)[1,2] 
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rhou1v1hat[i]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

} 

ru2v2hat<-c(rep(0,p-1),0) 

rhou2v2hat<-c(rep(0,p-1),0) 

for(i in 1:(p-1)) 

{ 

temp<-

matrix(c(u2mat[u2deltamat[,i]*v2deltavec==1,i],v2vec1[u2deltamat[,i]*v2deltavec==1]),

ncol=2) 

ru2v2hat[i]<-var(temp)[1,2] 

rhou2v2hat[i]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

} 

ru1v2hat<-c(rep(0,p-1),0) 

rhou1v2hat<-c(rep(0,p-1),0) 

for(i in 1:(p-1)) 

{ 

temp<-

matrix(c(u1mat[u1deltamat[,i]*v2deltavec==1,i],v2vec1[u1deltamat[,i]*v2deltavec==1]),

ncol=2) 

ru1v2hat[i]<-var(temp)[1,2] 

rhou1v2hat[i]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

} 

ru2v1hat<-c(rep(0,p-1),0) 

rhou2v1hat<-c(rep(0,p-1),0) 

for(i in 1:(p-1)) 

{ 

temp<-

matrix(c(u2mat[u2deltamat[,i]*v1deltavec==1,i],v1vec1[u2deltamat[,i]*v1deltavec==1]),

ncol=2) 

ru2v1hat[i]<-var(temp)[1,2] 

rhou2v1hat[i]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

} 

a1.vec<-rep(0,length(m1.vec)) 

b1.vec<-rep(0,length(m1.vec)) 

        for(i in 1:length(m1.vec)) 

{ 

a1.vec[i]<-sum(ru1u1hat[1:m1.vec[i],1:m1.vec[i]]) 

a1.vec[i]<-a1.vec[i]/m1.vec[i]^2 

 b1.vec[i] <-(v1deltavec[i]*sum(ru1v1hat[1:m1.vec[i]]))/(sum(v1deltavec)*m1.vec[i])-

(v2deltavec[i]*sum(ru1v2hat[1:m1.vec[i]]))/(sum(v2deltavec)*m1.vec[i]) 

} 

 

 a2.vec<-rep(0,length(m2.vec)) 

 b2.vec<-rep(0,length(m2.vec)) 

          for(i in 1:length(m2.vec)){ 

 a2.vec[i]<-sum(ru2u2hat[1:m2.vec[i],1:m2.vec[i]]) 
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 a2.vec[i]<-a2.vec[i]/m2.vec[i]^2 

 b2.vec[i] <-( v2deltavec[i]*sum(ru2v2hat[1:m2.vec[i]]))/(sum(v2deltavec)*m2.vec[i])-

(v1deltavec[i]*sum(ru2v1hat[1:m2.vec[i]]))/(sum(v1deltavec)*m2.vec[i]) 

   }       

 c1.vec<-rep(0,length(m1.vec)) 

 a.vec<-rep(0,length(m1.vec)) 

         for(i in 1:length(m1.vec)) 

{ 

 a.vec[i]<-sum(ru1u2hat[1:m1.vec[i],1:m2.vec[i]]) 

 c1.vec[i]<-a.vec[i]/(m1.vec[i]*m2.vec[i]) 

} 

 c2.vec<-rep(0,length(m1.vec)) 

         for(i in 1:length(m1.vec)) 

{ 

 a.vec[i]<-sum(ru1u2hat[1:m1.vec[i],1:m2.vec[i]]) 

 c2.vec[i]<-a.vec[i]/(m1.vec[i]*m2.vec[i]) 

} 

d1.vector<-(c1.vec)/(2*((a1.vec*a2.vec)-(c1.vec*c2.vec))) 

 e1.vector<-(a2.vec)/(2*((a1.vec*a2.vec)-(c1.vec*c2.vec))) 

 f1.vector<-(2*b2.vec*c1.vec+2*a2.vec*b1.vec)/(2*((a1.vec*a2.vec)-(c1.vec*c2.vec))) 

 d2.vector<-(a1.vec)/(2*((a1.vec*a2.vec)-(c1.vec*c2.vec))) 

 e2.vector<-(c2.vec)/(2*((a1.vec*a2.vec)-(c1.vec*c2.vec))) 

 f2.vector<-(2*b1.vec*c2.vec+2*a1.vec*b2.vec)/(2*((a1.vec*a2.vec)-(c1.vec*c2.vec))) 

ramda<-(sum(f2.vector)*sum(d1.vector)-

sum(f1.vector)*sum(d2.vector)+sum(d2.vector)-

sum(d1.vector))/(sum(e1.vector)*sum(d2.vector)-sum(e2.vector)*sum(d1.vector)) 

mu<-(sum(f2.vector)*sum(e1.vector)-sum(f1.vector)*sum(e2.vector)+sum(e2.vector)-

sum(e1.vector))/(sum(d1.vector)*sum(e2.vector)-sum(d2.vector)*sum(e1.vector)) 

 x1.vec<-ramda+2*b1.vec 

 x2.vec<-mu+2*b2.vec 

weight.fun<-function(k){ 

          wmat <- matrix(NA,nrow=k,ncol=2) 

           for (j in 1:      k) 

{ 

A<-matrix(c(2*a1.vec[j],-2*c2.vec[j],-2*c1.vec[j],2*a2.vec[j]),nrow=2) 

x<-c(x1.vec[j],x2.vec[j]) 

          wmat[j,]<-rbind(solve(A,x)) 

 } 

wmat<-matrix(rbind(wmat[1:k,]),k,2) 

 w1.vec<-wmat[,1] 

 w2.vec<-wmat[,2] 

list(w1.vec=w1.vec,w2.vec=w2.vec)  

} 

 wmat <- matrix(NA,nrow=n,ncol=2) 

 temp<-weight.fun(n) 

 opw1.vec<-temp[[1]] 
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 opw1.vec[which(opw1.vec[1:n]>=1)]<-NA 

 opw2.vec<-temp[[2]] 

 opw2.vec[which(opw2.vec[1:n]>=1)]<-NA 

 sum(w1.vec) 

 sum(w2.vec) 

      opsigmahat<-sum(a1.vec*opw1.vec^2-

2*b1.vec*opw1.vec)+sum(a2.vec*opw2.vec^2-2*b2.vec*opw2.vec)-

sum(2*c1.vec*opw1.vec*opw2.vec)+var(v1vec1[v1deltavec==1])/sum(v1deltavec)+var(

v2vec1[v2deltavec==1])/sum(v2deltavec)-2*rhov1v2hat/(D1*D2) 

 w1.vec<- m1.vec/sum(m1.vec) 

 w2.vec<- m2.vec/sum(m2.vec) 

       simp1sigmahat<-sum(a1.vec*w1.vec^2-2*b1.vec*w1.vec)+sum(a2.vec*w2.vec^2-

2*b2.vec*w2.vec)-

sum(2*c1.vec*w1.vec*w2.vec)+var(v1vec1[v1deltavec==1])/sum(v1deltavec)+var(v2ve

c1[v2deltavec==1])/sum(v2deltavec)-2*rhov1v2hat/(D1*D2) 

w1.vec<- rep(1/length(m1.vec), length(m1.vec)) 

w2.vec<- rep(1/length(m2.vec), length(m2.vec)) 

        simp2sigmahat<-sum(a1.vec*w1.vec^2-2*b1.vec*w1.vec)+sum(a2.vec*w2.vec^2-

2*b2.vec*w2.vec)-

sum(2*c1.vec*w1.vec*w2.vec)+var(v1vec1[v1deltavec==1])/sum(v1deltavec)+var(v2ve

c1[v2deltavec==1])/sum(v2deltavec)-2*rhov1v2hat/(D1*D2) 

       list ( w1.vec=opw1.vec,w2.vec=opw2.vec,   

sigmau1sqhat=ru1u1hat,sigmau2sqhat=ru2u2hat,      

sigmav1sqhat=rv1hat,sigmav2sqhat=rv2hat, 

rhou1u1hat=rhou1u1hat,rhou2u2hat=rhou2u2hat, 

      rhou1v1hat=rhou1v1hat,rhou2v2hat=rhou2v2hat, rhou1u2hat=rhou1u2hat, 

       rhov1v2hat=rhov1v2hat,rhou1v2hat=rhou1v2hat,rhou2v1hat=rhou2v1hat,  

a1.vec=a1.vec,a2.vec=a2.vec,b1.vec=b1.vec,b2.vec=b2.vec,c1.vec=c1.vec,c2.vec=c2.vec

,  opsigmahat= opsigmahat, smp1sigmahat=simp1sigmahat, 

simp2sigmahat=simp2sigmahat ) 

 

transform.fun<-function(xmat, yvec, xdeltamat, ydeltavec) 

{ 

           mvec <- apply(xdeltamat, 1, sum) 

 n <- nrow(xmat) 

 r <- ncol(xmat) 

 D <- sum(ydeltavec) 

 yvec1 <- yvec[ydeltavec == 1] 

 xlong <- rep(xmat, D) 

 ylong <- rep(yvec1, rep(n * r, D)) 

 xyarray <- array(ifelse(xlong - ylong <= 0, 1, 0), dim = c(n, r, D)) 

 xdeltalong <- rep(xdeltamat, D) 

 ydeltalong <- rep(rep(1, D), rep(n * r, D)) 

 xydeltaarray <- array(xdeltalong * ydeltalong, dim = c(n, r, D)) 

 mvec <- apply(xdeltamat, 1, sum) 

 wvec <- mvec/sum(mvec) 
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 wmarray <- array(rep(rep(wvec/mvec, r), D), dim = c(n, r, D)) 

 xyarray1 <- array(ifelse(xlong - ylong > 0, 1, 0), dim = c(n, r, D)) 

  

        umat <- apply(xyarray1, c(1, 2), sum)/sum(ydeltavec)  

        vvec <- apply(xyarray * wmarray * xydeltaarray, c(3), sum) 

        vvec1<-replace(ydeltavec,ydeltavec>0,vvec) 

  

list(umat=umat,vvec=vvec1,udeltamat=xdeltamat, vdeltavec=ydeltavec) 

} 

#compute wu’s weights 

weight.fun1<-function(xmat, yvec, xdeltamat, ydeltavec) 

{ 

  temp<-transform.fun(xmat, yvec, xdeltamat, ydeltavec) 

  umat<-temp[[1]] 

  vvec<-temp[[2]] 

  udeltamat<-temp[[3]] 

  vdeltavec<-temp[[4]] 

  p<-ncol(umat) 

ruuhat<-matrix(rep(0,p^2),ncol=p) 

rhouuhat<-matrix(rep(0,p^2),ncol=p) 

for(i in 1:p){ 

  for(j in 1:p){ 

temp<-matrix(c(umat[udeltamat[,i]*udeltamat[,j]==1,i], 

umat[udeltamat[,i]*udeltamat[,j]==1,j]),ncol=2) 

ruuhat[i,j]<-var(temp)[1,2] 

rhouuhat[i,j]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

} 

} 

ruvhat<-c(rep(0,p-1),0) 

rhouvhat<-c(rep(0,p-1),0) 

for(i in 1:(p-1)){ 

temp<-

matrix(c(umat[udeltamat[,i]*vdeltavec==1,i],vvec[udeltamat[,i]*vdeltavec==1]),ncol=2) 

ruvhat[i]<-var(temp)[1,2] 

rhouvhat[i]<-var(temp)[1,2]/sqrt(var(temp)[1,1]*var(temp)[2,2]) 

} 

       mvec<-apply(udeltamat,1,sum) 

        avec<-rep(0,length(mvec)) 

        bvec<-rep(0,length(mvec)) 

        for(i in 1:length(mvec)){ 

        avec[i]<-sum(ruuhat[1:mvec[i],1:mvec[i]]) 

 avec[i]<-avec[i]/mvec[i]^2 

 

         bvec[i] <- vdeltavec[i]*sum(ruvhat[1:mvec[i]])/(sum(vdeltavec)*mvec[i]) 

   }       

 temp <- bvec/avec 
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 c <- (1 - sum(temp))/sum(avec^(-1)) 

 opwvec <- c * avec^(-1) + temp          

 opsigmahat<-sum(avec*opwvec^2-

2*bvec*opwvec)+var(vvec[vdeltavec==1])/sum(vdeltavec) 

 

        simp1wvec <- mvec/sum(mvec) 

        simp1sigmahat<-sum(avec*simp1wvec^2-

2*bvec*simp1wvec)+var(vvec[vdeltavec==1])/sum(vdeltavec) 

        simp2wvec <- rep(1/length(mvec), length(mvec)) 

        simp2sigmahat<-sum(avec*simp2wvec^2-

2*bvec*simp2wvec)+var(vvec[vdeltavec==1])/sum(vdeltavec) 

list(opwvec=opwvec,simp1sigmahat=simp1sigmahat,opsigmahat=opsigmahat,simp2sigm

ahat=simp2sigmahat,ruuhat=ruuhat,ruvhat=ruvhat,rhouuhat=rhouuhat,rhouvhat=rhouvhat

) 

### compute theta(AUC)########################### 

 

auc.fun<-function(x1mat,x2mat,y1vec,y2vec, 

x1deltamat,x2deltamat,y1deltavec,y2deltavec) 

  { 

  n <- nrow(x1mat) 

  r1 <- ncol(x1mat) 

  r2 <- ncol(x2mat) 

  D1 <- sum(y1deltavec) 

  D2 <- sum(y2deltavec) 

  m1.vec <- apply(x1deltamat, 1, sum)   

  m2.vec <- apply(x2deltamat, 1, sum)   

  y1vec1 <- y1vec[y1deltavec == 1] 

  y2vec1 <- y2vec[y2deltavec == 1] 

  x1long <- rep(x1mat, D1) 

  x2long <- rep(x2mat, D2) 

  y1long <- rep(y1vec1, rep(n * r1, D1)) 

  y2long <- rep(y2vec1, rep(n * r2, D2)) 

  xyarray_1 <- array(ifelse(x1long - y1long<= 0,1, 0), dim = c(n, r1, D1)) 

  xyarray_2 <- array(ifelse(x2long - y2long<= 0,1, 0), dim = c(n, r2, D2)) 

  x1deltalong <- rep(x1deltamat, D1)  

  x2deltalong <- rep(x2deltamat, D2)  

  y1deltalong <- rep(rep(1, D1), rep(n * r1, D1)) 

  y2deltalong <- rep(rep(1, D2), rep(n * r2, D2)) 

  xydeltaarray_1 <- array(x1deltalong * y1deltalong, dim = c(n, r1, D1)) 

  xydeltaarray_2<- array(x2deltalong * y2deltalong, dim = c(n, r2, D2)) 

 #weight scheme 1:the number of the visits   

  w1.vec <- m1.vec/sum(m1.vec) 

  w2.vec <- m2.vec/sum(m2.vec) 

  wmarray_1 <- array(rep(rep(w1.vec/m1.vec, r1), D1), dim = c(n, r1, D1)) 

  wmarray_2 <- array(rep(rep(w2.vec/m2.vec, r2), D2), dim = c(n, r2, D2)) 

  v1vec <- apply(xyarray_1 * wmarray_1 * xydeltaarray_1, c(3), sum) 
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  v2vec <- apply(xyarray_2 * wmarray_2 * xydeltaarray_2, c(3), sum) 

  auc1_1 <- sum(v1vec)/D1 

  auc1_2 <- sum(v2vec)/D2 

 #weight scheme 2: the number of the subjects 

  w1.vec <- rep(1/n, n) 

  w2.vec <- rep(1/n, n) 

  wmarray_1 <- array(rep(rep(w1.vec/m1.vec, r1), D1), dim = c(n, r1, D1)) 

  wmarray_2 <- array(rep(rep(w2.vec/m2.vec, r2), D2), dim = c(n, r2, D2)) 

  v1vec <- apply(xyarray_1 * wmarray_1 * xydeltaarray_1, c(3), sum) 

  v2vec <- apply(xyarray_2 * wmarray_2 * xydeltaarray_2, c(3), sum) 

  auc2_1 <- sum(v1vec)/D1 

  auc2_2 <- sum(v2vec)/D2 

 

 

  temp1 <- weight.fun1(x1mat,y1vec, x1deltamat,y1deltavec) 

  temp2 <- weight.fun1(x2mat,y2vec, x2deltamat,y2deltavec) 

  w1.vec<-temp1[[1]] 

  w2.vec<-temp2[[1]] 

  wmarray_1 <- array(rep(rep(temp1[[1]]/m1.vec, r1), D1), dim = c(n, r1, D1)) 

  wmarray_2 <- array(rep(rep(temp2[[1]]/m2.vec, r2), D2), dim = c(n, r2, D2)) 

  v1vec <- apply(xyarray_1 * wmarray_1 * xydeltaarray_1, c(3), sum) 

  v2vec <- apply(xyarray_2 * wmarray_2 * xydeltaarray_2, c(3), sum) 

  auc3_1 <- sum(v1vec)/D1 

  auc3_2 <- sum(v2vec)/D2 

  temp <- weight.fun(x1mat,x2mat,y1vec,y2vec, x1deltamat,           

x2deltamat,y1deltavec,y2deltavec) 

  w1.vec<-temp[[1]] 

  w2.vec<-temp[[2]] 

  wmarray_1 <- array(rep(rep(temp[[1]]/m1.vec, r1), D1), dim = c(n, r1, D1)) 

  wmarray_2 <- array(rep(rep(temp[[2]]/m2.vec, r2), D2), dim = c(n, r2, D2)) 

  v1vec <- apply(xyarray_1 * wmarray_1 * xydeltaarray_1, c(3), sum) 

  v2vec <- apply(xyarray_2 * wmarray_2 * xydeltaarray_2, c(3), sum) 

  auc4_1 <- sum(v1vec)/D1 

  auc4_2 <- sum(v2vec)/D2 

  aucdiff1<-auc1_1-auc1_2 

  aucdiff2<-auc2_1-auc2_2 

  aucdiff3<-auc3_1-auc3_2 

  aucdiff4<-auc4_1-auc4_2 

  aucvec<-c(auc1_1,auc1_2,auc2_1,auc2_2,auc3_1,auc3_2,auc4_1,auc4_2) 

  aucdiff<-c(aucdiff1, aucdiff2, aucdiff3,aucdiff4) 

  list(aucdiff=aucdiff) 

    }                 

                

var.fun<-function(x1mat,x2mat,y1vec,y2vec, 

x1deltamat,x2deltamat,y1deltavec,y2deltavec) 

{   
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  temp <- weight.fun(x1mat,x2mat,y1vec,y2vec, x1deltamat, 

x2deltamat,y1deltavec,y2deltavec) 

  sigmau1sqhat <- temp[[3]] 

  sigmau2sqhat <- temp[[4]] 

  sigmav1sqhat <- temp[[5]] 

  sigmav2sqhat <- temp[[6]] 

  rhou1u1hat <- temp[[7]] 

  rhou2u2hat <- temp[[8]] 

  rhou1v1hat <- temp[[9]] 

  rhou2v2hat <- temp[[10]] 

  rhou1u2hat <- temp[[11]] 

  rhov1v2hat <- temp[[12]] 

  rhou1v2hat <- temp[[13]] 

  rhou2v1hat <- temp[[14]] 

  a1.vec <- temp[[15]] 

  a2.vec <- temp[[16]] 

  b1.vec <- temp[[17]] 

  b2.vec <- temp[[18]] 

  c1.vec <- temp[[19]] 

  c2.vec <- temp[[20]] 

  opw1.vec<-temp[[1]] 

  opw2.vec<-temp[[2]] 

  opsigmahat<-sum(a1.vec*opw1.vec^2-2*b1.vec*opw1.vec)+sum(a2.vec*opw2.vec^2-

2*b2.vec*opw2.vec)-

sum(2*c1.vec*opw1.vec*opw2.vec)+var(v1vec1[v1deltavec==1])/sum(v1deltavec)+var(

v2vec1[v2deltavec==1])/sum(v2deltavec)-2*rhov1v2hat/(D1*D2) 

       w1.vec<- m1.vec/sum(m1.vec) 

       w2.vec<- m2.vec/sum(m2.vec) 

       simp1sigmahat<-sum(a1.vec*w1.vec^2-2*b1.vec*w1.vec)+sum(a2.vec*w2.vec^2-

2*b2.vec*w2.vec)-

sum(2*c1.vec*w1.vec*w2.vec)+var(v1vec1[v1deltavec==1])/sum(v1deltavec)+var(v2ve

c1[v2deltavec==1])/sum(v2deltavec)-2*rhov1v2hat/(D1*D2) 

        w1.vec<- rep(1/length(m1.vec), length(m1.vec)) 

        w2.vec<- rep(1/length(m2.vec), length(m2.vec)) 

        simp2sigmahat<-sum(a1.vec*w1.vec^2-2*b1.vec*w1.vec)+sum(a2.vec*w2.vec^2-

2*b2.vec*w2.vec)-

sum(2*c1.vec*w1.vec*w2.vec)+var(v1vec1[v1deltavec==1])/sum(v1deltavec)+var(v2ve

c1[v2deltavec==1])/sum(v2deltavec)-2*rhov1v2hat/(D1*D2) 

   temp <- weight.fun1(x1mat,y1vec,x1deltamat, y1deltavec) 

  w1.vec<-temp[[1]] 

  temp <- weight.fun1(x2mat,y2vec,x2deltamat, y2deltavec) 

   w2.vec<-temp[[1]] 

   simp3sigmahat<-sum(a1.vec*w1.vec^2-2*b1.vec*w1.vec)+sum(a2.vec*w2.vec^2-

2*b2.vec*w2.vec)-

sum(2*c1.vec*w1.vec*w2.vec)+var(v1vec1[v1deltavec==1])/sum(v1deltavec)+var(v2ve

c1[v2deltavec==1])/sum(v2deltavec)-2*rhov1v2hat/(D1*D2) 



www.manaraa.com

                                                                91 

 

    var<-c( simp1sigmahat,  simp2sigmahat,  simp3sigmahat,opsigmahat)   

list( var=var) 

} 

##data simulation 

library(MASS) 

sigma.fun<-function(sigmaxsq,rho,lambda) 

{ 

  rxx<-   matrix( c( 

    sigmaxsq,rho,     rho,     rho,     rho,     rho,      lambda,   lambda,  lambda, lambda,   

lambda,  lambda,   

    rho,     sigmaxsq,rho,     rho,     rho,     rho,      lambda,   lambda,  lambda, lambda,   

lambda,  lambda,  

    rho,     rho,     sigmaxsq,rho,     rho,     rho,      lambda,   lambda,  lambda, lambda,   

lambda,  lambda, 

    rho,     rho,     rho,     sigmaxsq,rho,     rho,      lambda,   lambda,  lambda, lambda,   

lambda,  lambda, 

    rho,     rho,     rho,     rho, sigmaxsq,    rho,      lambda,   lambda,  lambda, lambda,   

lambda,  lambda,  

    rho,     rho,     rho,     rho,     rho,     sigmaxsq, lambda,   lambda,  lambda, lambda,   

lambda,  lambda, 

   lambda,   lambda,  lambda, lambda,   lambda,  lambda,   sigmaxsq, rho,     rho,     rho,     

rho,     rho,   

   lambda,   lambda,  lambda, lambda,   lambda,  lambda,     rho,     sigmaxsq, rho,     rho,     

rho,     rho,    

   lambda,   lambda,  lambda, lambda,   lambda,  lambda,     rho,     rho,     sigmaxsq, rho,     

rho,     rho,   

   lambda,   lambda,  lambda, lambda,   lambda,  lambda,     rho,     rho,     rho,      

sigmaxsq,rho,     rho,   

   lambda,   lambda,  lambda, lambda,   lambda,  lambda,     rho,     rho,     rho,      rho,     

sigmaxsq,rho,   

   lambda,   lambda,  lambda, lambda,   lambda,  lambda,     rho,     rho,     rho,      rho,     

rho,     sigmaxsq 

),  

    byrow=T,ncol=12) 

} 

 

data.fun<-function(n,rate1,rate2,sigmaxsq,rho,lambda) 

{  

  sigma<-sigma.fun(sigmaxsq,rho, lambda) 

  mu<-c(0,0,0,0,0,0,0,0,0,0,0,0) 

  lis <- lapply(1:1, mvrnorm,n=n,mu=mu,Sigma=sigma) 

  temp<-lis[[1]] 

  x1mat<-temp[,1:6] 

  x2mat<-temp[,7:12] 

  temp1.dat<-rexp(n,rate=rate1) 

  y1deltavec<-ifelse(temp1.dat<5,1,0)  
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  psi1<-sum(y1deltavec)/length(y1deltavec)   

  x1deltamat<-matrix(rep(1,6*n),ncol=6)  

  x1deltamat[,1]<-rep(1,n) 

  x1deltamat[,2]<-ifelse(temp1.dat<=1,0,1) 

  x1deltamat[,3]<-ifelse(temp1.dat<=2,0,1) 

  x1deltamat[,4]<-ifelse(temp1.dat<=3,0,1) 

  x1deltamat[,5]<-ifelse(temp1.dat<=4,0,1) 

  x1deltamat[,6]<-ifelse(temp1.dat<=5,0,1) 

  x1deltamat<-matrix(c(x1deltamat[,1:6]),ncol=6) 

  y1vec<-rep(0,n) 

  for ( i in 1:n) { 

  if (temp1.dat[i]<=1){y1vec[i]=x1mat[i,2]+1} else 

  if (temp1.dat[i]<=2){y1vec[i]=x1mat[i,3]+1} else 

  if (temp1.dat[i]<=3){y1vec[i]=x1mat[i,4]+1} else 

  if (temp1.dat[i]<=4){y1vec[i]=x1mat[i,5]+1} else 

  if (temp1.dat[i]<=5){y1vec[i]=x1mat[i,6]+1} else 

  if (temp1.dat[i]>5) {y1vec[i]=x1mat[i,6]+1} 

          } 

  temp2.dat<-rexp(n,rate=rate2) 

  y2deltavec<-ifelse(temp2.dat<5,1,0)  

  psi2<-sum(y2deltavec)/length(y2deltavec)   

  x2deltamat<-matrix(rep(1,6*n),ncol=6)  

  x2deltamat[,1]<-rep(1,n) 

  x2deltamat[,2]<-ifelse(temp2.dat<=1,0,1) 

  x2deltamat[,3]<-ifelse(temp2.dat<=2,0,1) 

  x2deltamat[,4]<-ifelse(temp2.dat<=3,0,1) 

  x2deltamat[,5]<-ifelse(temp2.dat<=4,0,1) 

  x2deltamat[,6]<-ifelse(temp2.dat<=5,0,1) 

  x2deltamat<-matrix(c(x2deltamat[,1:6]),ncol=6) 

  y2vec<-rep(0,n) 

  for ( i in 1:n) { 

  if (temp2.dat[i]<=1){y2vec[i]=x2mat[i,2]+1} else 

  if (temp2.dat[i]<=2){y2vec[i]=x2mat[i,3]+1} else 

  if (temp2.dat[i]<=3){y2vec[i]=x2mat[i,4]+1} else 

  if (temp2.dat[i]<=4){y2vec[i]=x2mat[i,5]+1} else 

  if (temp2.dat[i]<=5){y2vec[i]=x2mat[i,6]+1} else 

  ##if (temp2.dat[i]>5) {y2vec[i]=0}## 

  if (temp2.dat[i]>5) {y2vec[i]=x2mat[i,6]+1} 

                   } 

  list(x1mat=x1mat,x2mat=x2mat,y1vec=y1vec,y2vec=y2vec, 

       x1deltamat=x1deltamat,x2deltamat=x2deltamat,y1deltavec=y1deltavec, 

y2deltavec=y2deltavec,psi1=psi1,psi2=psi2) 

} 

sim.fun<-function(repl,n,rate1,rate2,sigmaxsq,rho,lambda) 

   { 

auc<-matrix(rep(0,repl*4),ncol=4) 
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var<-matrix(rep(0,repl*4),ncol=4) 

out<-rep(0,8) 

i=0 

for(i in 1:repl) 

        { 

  sim.dat<-data.fun(n,rate1,rate2,sigmaxsq,rho,lambda) 

  x1mat<-sim.dat[[1]] 

  x2mat<-sim.dat[[2]] 

  y1vec<-sim.dat[[3]] 

  y2vec<-sim.dat[[4]] 

  x1deltamat<- sim.dat[[5]] 

  x2deltamat<- sim.dat[[6]] 

  y1deltavec<-sim.dat[[7]] 

  y2deltavec<-sim.dat[[8]] 

  temp<-auc.fun(x1mat,x2mat,y1vec,y2vec, x1deltamat, 

x2deltamat,y1deltavec,y2deltavec) 

  auc[i,]<-temp[[1]] 

        } 

mean<-apply(auc,2,mean, na.rm=T)[1:4] 

var<-apply(auc,2,var, na.rm=T)[1:4] 

truediff<-c(0,0,0,0) 

bias<-mean-truediff 

mse<-var+bias^2 

out<-c(bias,mse) 

print(out) 

} 

sim50<-sim.fun(2000,50,.05,0.10,1,0.3,0.1) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.5,0.1) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.7,0.1) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.9,0.1) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.3,0.3) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.5,0.3) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.7,0.3) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.9,0.3) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.3,0.5) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.5,0.5) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.7,0.5) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.9,0.5) 

 

 

sim50<-sim.fun(2000,50,.05,0.10,1,0.3,0.7) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.5,0.7) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.7,0.7) 

sim50<-sim.fun(2000,50,.05,0.10,1,0.9,0.7) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.3,0.1) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.5,0.1) 
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sim50<-sim.fun(2000,50,.10,0.10,1,0.7,0.1) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.9,0.1) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.3,0.3) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.5,0.3) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.7,0.3) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.9,0.3) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.3,0.5) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.5,0.5) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.7,0.5) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.9,0.5) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.3,0.7) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.5,0.7) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.7,0.7) 

sim50<-sim.fun(2000,50,.10,0.10,1,0.9,0.7) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.3,0.1) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.5,0.1) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.7,0.1) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.9,0.1) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.3,0.3) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.5,0.3) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.7,0.3) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.9,0.3) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.3,0.5) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.5,0.5) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.7,0.5) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.9,0.5) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.3,0.7) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.5,0.7) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.7,0.7) 

sim50<-sim.fun(2000,50,.10,0.15,1,0.9,0.7) 

          

 

###read the thyroid data into R #### 

library(foreign)  

case<- read.xport("M:/PHD/disseration/manuscript 7--compare correlated 

group/case_tpo.xport") 

control<- read.xport("M:/PHD/disseration/manuscript 7--compare correlated 

group/control_tpo.xport") 

 

detach("package:foreign") 

names(case) #see the variable names 

names(case)<-tolower(names(case)) 

names(control) #see the variable names 

names(control)<-tolower(names(control)) 

 x1mat<-as.matrix(case[,2:4]) 

 x1deltamat<- as.matrix(case[,5:7]) 
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 y1deltavec<-as.vector(case[,8]) 

 y1vec<-as.vector(case[,9]) 

 x2mat<-as.matrix(control[,2:4]) 

 x2deltamat<- as.matrix(control[,5:7]) 

 y2deltavec<-as.vector(control[,8]) 

 y2vec<-as.vector(control[,9]) 

Auc<-auc.fun(x1mat,x2mat,y1vec,y2vec, x1deltamat, x2deltamat,y1deltavec,y2deltavec) 

var<-var.fun(x1mat,x2mat,y1vec,y2vec, x1deltamat, x2deltamat,y1deltavec,y2deltavec) 

weight.fun(x1mat,x2mat,y1vec,y2vec, x1deltamat, x2deltamat,y1deltavec,y2deltavec) 

 

### 95% confidence interval## 

theta.ci<-function(x1mat,x2mat,y1vec,y2vec, x1deltamat, 

x2deltamat,y1deltavec,y2deltavec) 

 { 

  n<-nrow(x1mat) 

  auc<-auc.fun(x1mat,x2mat,y1vec,y2vec, x1deltamat, x2deltamat,y1deltavec,y2deltavec) 

  var<-var.fun(x1mat,x2mat,y1vec,y2vec, x1deltamat, x2deltamat,y1deltavec,y2deltavec) 

  cileftvec<-auc[[1]]-1.96*sqrt(var[[1]]/n) 

  cirightvc<-auc[[1]]+1.96*sqrt(var[[1]]/n) 

  ci<-c(cileftvec,cirightvc) 

  print(ci) 

} 

ci<-theta.ci(x1mat,x2mat,y1vec,y2vec, x1deltamat, x2deltamat,y1deltavec,y2deltavec) 

 

#####optimum cutoff,sensitivity, specificity, weight: 1/n############# 

sen.spe.fun<-function(xmat, xdeltamat, yvec, ydeltavec) 

{  

n <- nrow(xmat) 

r <- ncol(xmat) 

D <- sum(ydeltavec) 

yvec1 <- yvec[ydeltavec == 1] 

x<-as.vector(xmat*xdeltamat)[xmat*xdeltamat>0] 

y<-as.vector(yvec*ydeltavec)[yvec*ydeltavec>0] 

xy<-c(x,y) 

c<-unique(rev(sort(xy))) 

temp1<-t(matrix(rep(yvec1,length(c)), nrow=D)) 

temp2<-matrix(rep(c,D), ncol=D) 

temparray<- array(ifelse(temp1- temp2 <= 0,1,0), dim = c(length(c),D)) 

#use above for FPIR and ratio; 

TPF<-apply(temparray,1, sum)/D 

temp3<-t(matrix(rep(x,length(c)), nrow=length(x))) 

temp4<-matrix(rep(c,length(x)), ncol=length(x)) 

temparray2<- array(ifelse(temp3- temp4 <= 0,1,0), dim = c(length(c),length(x))) 

#use above for FPIR and ratio; 

FPF <-apply(temparray2, 1, sum)/length(x) 

sen<-TPF 
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spe<-1-FPF 

sum<-sen+spe 

data<-matrix(c(c,sen,spe,sum),ncol=4) 

cutoff<-data[sum==max(sum)] 

print(cutoff) 

library(ggplot2) 

plot(FPF,TPF,type="l", col="blue", xlab="1-Specificity", ylab="Sensitivity") 

plot.data<-matrix(c(TPF, FPF),ncol=2) 

list(data.plot=plot.data) 

 } 

###################plot roc curves################################ 

install.packages("ggplot2") 

sen.spe_case<-sen.spe.fun(x1mat, x1deltamat, y1vec, y1deltavec) 

case.plot<-sen.spe_case$data.plot 

sen.spe_control<-sen.spe.fun(x2mat, x2deltamat, y2vec, y2deltavec) 

control.plot<-sen.spe_control$data.plot 

library(ggplot2) 

h_range <- range(0, case.plot[,1], control.plot[,1]) 

v_range <- range(0, case.plot[,2], control.plot[,2]) 

plot(case.plot[,2],case.plot[,1],type="l", col="blue", ylim=h_range,xlim=v_range, 

xlab="1-Specificity", ylab="Sensitivity") 

title(main="ROC Curves For TSH (Cases VS Controls)", font.main=4) 

lines(control.plot[,2],control.plot[,1],lty=3,col="red" ) 

legend(locator(1), c("Breast Cancer Group","Control Group"), cex=0.8, 

col=c("blue","red"), lty=c(1,3)) 
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Appendix B: SAS codes for comparing the correlated AUCs. 

 

Following are the SAS codes that were needed for comparing the prognostic accuracy of 

different biomarkers for the manuscript in Section Three. 

%include "roc.sas"; 

%include "rocplot.sas"; 

%include " cutoff.sas"; 

   

libname ROC 'C:\Documents and Settings\Xup\Desktop\PHD\disseration\manuscript 1- 

baseline ROC comparison'; 

data roc_low(keep=maskid ins_trt risktype age bmi gender age_at_draw baseica baseiaa 

baseica512_res basegad_res basemiaa_res numabs basefastins basefastgluc  basehomar 

basefpir baseratio  base_ogtt_fasting base_ogtt_twohour base_peak_c_pep 

base_auc_c_pep basehb iddm race randage iddmtime); 

   set roc.low_ivgtt; 

base_auc_c_pep=10*(base_ogtt_pep_0+(4*base_ogtt_pep_30)+(2*base_ogtt_pep_60)+(

4*base_ogtt_pep_90)+(base_ogtt_pep_120)); 

    age=age_at_draw/365.25; 

      run; 

proc sort data=roc_low; 

   by maskid age_at_draw; 

   run; 

data roc; 

   set roc_low; 

   by maskid; 

   if first.maskid; 

   run; 

proc means data=roc n mean std; 

   class iddm; 

   var age basefastgluc basefastins   basefpir  basehomar baseratio  base_ogtt_fasting 

base_ogtt_twohour base_peak_c_pep base_auc_c_pep basehb; 

   run; 

proc ttest data=roc; 

   class iddm; 

   var age basefastgluc basefastins   basefpir  basehomar baseratio  base_ogtt_fasting 

base_ogtt_twohour base_peak_c_pep base_auc_c_pep basehb; 

   run; 

proc logistic data=roc; 

       model iddm(event='1') = baseica  / outroc=or roceps=0; 

       output out=icapred p=pica; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 



www.manaraa.com

                                                                98 

 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=icapred, outroc=or, p=pica, id=ica) 

     title2; 

 

data joint; 

       set _rocplot; 

       length index $ 20; 

       Index='ICA titer'; 

       run; 

proc logistic data=roc; 

       model iddm(event='1') = baseiaa  / outroc=or roceps=0; 

       output out=iaapred p=piaa; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=iaapred, outroc=or, p=piaa, id=iaa) 

     title2; 

data iaa; 

       set _rocplot; 

       length index $ 20; 

       Index='IAA titer'; 

       run; 

data joint; 

       set joint iaa; 

       run; 

 

proc logistic data=roc; 

       model iddm(event='1') = baseica512_res  / outroc=or roceps=0; 

       output out=ica512pred p=pica512; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=ica512pred, outroc=or, p=pica512, id=ica512) 

     title2; 

data ica512; 

       set _rocplot; 
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       length index $ 20; 

       Index='ICA512 titer'; 

       Run; 

data joint; 

       set joint ica512; 

       run; 

 

proc logistic data=roc; 

       model iddm(event='1') = basegad_res  / outroc=or roceps=0; 

       output out=gadpred p=pgad; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=gadpred, outroc=or, p=pgad, id=gad) 

     title2; 

data gad; 

       set _rocplot; 

       length index $ 20; 

       Index='GAD65 titer'; 

       run; 

data joint; 

       set joint gad; 

       run; 

    

proc logistic data=roc; 

       model iddm(event='1') = basemiaa_res  / outroc=or roceps=0; 

       output out=miaapred p=pmiaa; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

      title2 "Approximate area under curve = &area"; 

     %rocplot(out=miaapred, outroc=or, p=pmiaa, id=miaa) 

     title2; 

data miaa; 

       set _rocplot; 

       length index $ 20; 

       Index='MIAA titer'; 

       run; 



www.manaraa.com

                                                                100 

 

data joint; 

       set joint miaa; 

       run; 

 

proc logistic data=roc; 

       model iddm(event='1') = numabs  / outroc=or roceps=0; 

       output out=abspred p=pabs; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

        title2 "Approximate area under curve = &area"; 

     %rocplot(out=abspred, outroc=or, p=pabs, id=abs) 

     title2; 

    

data abs; 

       set _rocplot; 

       length index $ 20; 

       Index='Number of Abs'; 

       run; 

data joint; 

       set joint abs; 

       run; 

%roc(data= icapred iaapred ica512pred gadpred miaapred abspred,  

       var=  pica piaa pica512 pgad pmiaa pabs, 

       response=iddm) 

 

/*fast insulin*/ 

     title "ROC plot for Fasting Insulin"; 

 proc logistic data=roc; 

       model iddm(event='1') = basefastins  / outroc=or roceps=0; 

       output out=inspred p=pins; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=inspred, outroc=or, p=pins, id=ins) 

     title2; 

data joint; 

       set _rocplot; 

       length index $ 20; 
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       Index='Fasting Insulin'; 

       run; 

 

    /*fast glucose*/ 

     title "ROC plot for Fasting Glucose"; 

proc logistic data=roc; 

       model iddm(event='1') =basefastgluc   / outroc=or roceps=0; 

       output out=glucpred p=pgluc; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=glucpred, outroc=or, p=pgluc, id=gluc) 

     title2; 

 data glucose; 

       set _rocplot; 

       length index $ 20; 

       Index='Fasting Glucose'; 

       run; 

 data joint; 

       set joint glucose; 

       run; 

 

   /* FPIR*/ 

     title "ROC plot for FPIR"; 

 proc logistic data=roc; 

       model iddm(event='1') = basefpir / outroc=or roceps=0; 

       output out=fpirpred p=pfpir; 

       ods output association=assoc; 

       run; 

 data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=fpirpred, outroc=or, p=pfpir, id=fpir) 

     title2; 

 data fpir; 

       set _rocplot; 

       length index $ 20; 

       Index='FPIR'; 

       run; 
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 data joint; 

       set joint fpir; 

       run; 

    

   /* HOMAR*/ 

     title "ROC plot for HOMAR"; 

 proc logistic data=roc; 

       model iddm(event='1') = basehomar/ outroc=or roceps=0; 

       output out=homarpred p=phomar; 

       ods output association=assoc; 

       run; 

 data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=homarpred, outroc=or, p=phomar, id=homar) 

     title2; 

 data homar; 

       set _rocplot; 

       length index $ 20; 

       Index='HOMA-IR'; 

       run; 

 data joint; 

       set joint homar; 

       run; 

    

   /* FPIR/HOMAR*/ 

     title "ROC plot for FPIR/HOMAR"; 

 proc logistic data=roc; 

       model iddm(event='1') = baseratio / outroc=or roceps=0; 

       output out=ratiopred p=pratio; 

       ods output association=assoc; 

       run; 

 data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=ratiopred, outroc=or, p=pratio, id=ratio) 

     title2; 

 data ratio; 

       set _rocplot; 

       length index $ 20; 
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       Index='FPIR/HOMA-IR'; 

       run; 

 data joint; 

       set joint ratio; 

       run; 

  /*fasting glucose*/ 

title "ROC plot for Fasting Glucose--OGTT"; 

 proc logistic data=roc; 

       model iddm(event='1') =  base_ogtt_fasting / outroc=or roceps=0; 

       output out=ogglucpred p=poggluc; 

       ods output association=assoc; 

       run; 

 data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=ogglucpred, outroc=or, p=poggluc, id=oggluc) 

     title2; 

 data oggluc; 

       set _rocplot; 

       length index $ 20; 

       Index='Fasting Glucose--OGTT'; 

       run; 

  /*2 hour glucose*/ 

title "ROC plot for two-hour Glucose--OGTT"; 

 proc logistic data=roc; 

       model iddm(event='1') =  base_ogtt_twohour / outroc=or roceps=0; 

       output out=oggluc2hpred p=poggluc2h; 

       ods output association=assoc; 

       run; 

 data _null_; 

       set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=oggluc2hpred, outroc=or, p=poggluc2h, id=oggluc2h) 

     title2; 

 data oggluc2h; 

       set _rocplot; 

       length index $ 20; 

       Index='2-hour Glucose--OGTT'; 

       run; 

 data joint1; 
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       set oggluc oggluc2h; 

       run; 

 

   /* peak c peptide*/ 

     title "ROC plot for Peak C Peptide"; 

proc logistic data=roc; 

       model iddm(event='1') = base_peak_c_pep / outroc=or roceps=0; 

       output out=peakcpred p=ppeakc; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=peakcpred, outroc=or, p=ppeakc, id=peakc) 

     title2; 

    

data peakcpep; 

       set _rocplot; 

       length index $ 20; 

       Index='Peak C Peptide'; 

       run; 

data joint1; 

       set joint1 peakcpep; 

       run; 

   /* peak c peptide*/ 

     title "ROC plot for AUC C Peptide"; 

proc logistic data=roc; 

       model iddm(event='1') = base_auc_c_pep / outroc=or roceps=0; 

       output out=auccpred p=paucc; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=auccpred, outroc=or, p=paucc, id=aucc) 

     title2; 

data auccpep; 

       set _rocplot; 

       length index $ 20; 

       Index='AUC C Peptide'; 
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       run; 

data joint1; 

       set joint1 auccpep; 

       run; 

     

   /* hb1ac*/ 

     title "ROC plot for HBA1C"; 

proc logistic data=roc; 

       model iddm(event='1') = basehb / outroc=or roceps=0; 

       output out=hbpred p=phb; 

       ods output association=assoc; 

       run; 

data _null_; 

        set assoc; 

        if label2='c' then call symput("area",cvalue2); 

        run; 

    

     title2 "Approximate area under curve = &area"; 

     %rocplot(out=hbpred, outroc=or, p=phb, id=hb) 

     title2; 

data hb1ac; 

       set _rocplot; 

       length index $ 20; 

       Index='HBA1c'; 

       run; 

data joint2; 

       set joint joint1 hb1ac; 

       run; 

data jointnew; 

    set oggluc2h ratio; 

    run; 

   

   /* Compare areas under the ROC curves of the indices using the method presented by 

DeLong, et. al. (1988). 

   */ 

%roc(data= oggluc2hpred fpirpred homarpred ratiopred,  

          var=  poggluc2h  pfpir phomar pratio, 

          response=iddm) 

 

 %roc(data= glucpred inspred fpirpred homarpred ratiopred ogglucpred oggluc2hpred 

peakcpred auccpred hbpred, 

          var= pgluc pins pfpir phomar pratio poggluc poggluc2h ppeakc paucc phb , 

response=iddm) 

 

   ods html; 

   ods graphics on; 
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*title1 h = 3 "Figure: ROC Curves for Various Metabolic Indexes"; 

axis1 c = black value = (h = 2.2) minor = none 

order = (0 to 1 by 0.1) width = 2 

label=(angle=90 h = 2.8 'Sensitivity'); 

axis2 c = black value = (h = 2.2) 

order = (0 to 1 by 0.1) width = 2 

minor = none label= ( h = 2.8 "1-Specificity"); 

legend value = (height = 1.8) cborder = black 

label = none 

position = (TOP inside RIGHT) 

mode = share; 

goptions reset = symbol rotate = landscape 

device = cgmmwwc gsfname = event 

ctext = black cback = white 

gsfmode = replace ftext=swissb 

gsflen=80 display autofeed 

gunit = pct; 

     symbol1 i=join v=dot c=black line=1 h=2.0 ; 

     symbol2 i=join  v=triangle c=black line=1  h=2.5; 

     symbol3 i=join  v=circle  c=black line=1 h=2.0 ; 

  symbol4 i=join  v=star c=black line=1  h=3.5; 

proc gplot data=jointnew; 

      * title  "ROC Curves for Various Metabolic Indexes"; 

       label index="Index"; 

       plot _sensit_ * _1mspec_ = Index / 

          vaxis=axis1 haxis=axis2; 

       run; 

       quit; 

     title;     

 

     title2; 

  *   footnote; 

 

   ods html close; 

   ods graphics off; 

      

     symbol1 i=join v=circle c=black line=1; 

     symbol2 i=join v=dot c=black line=1; 

     symbol3 i=join v=triangle c=black line=1; 

  symbol4 i=join v=square c=black line=1; 

     symbol5 i=join v=star c=black line=1; 

 

proc gplot data=joint; 

       title  "Metabolic Indexed Derived from IVGTT"; 

       label index="Index"; 
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       plot _sensit_ * _1mspec_ = Index / 

          vaxis=0 to 1 by .1 haxis=0 to 1 by .1; 

       run; 

       quit; 

     title; 

     title2; 

     footnote; 

 

     symbol1 i=join v=circle c=black line=2; 

     symbol2 i=join v=star c=black line=2; 

     symbol3 i=join v=triangle c=black line=2 

     symbol4 i=join v=dot c=black line=2; 

 proc gplot data=joint1; 

       title  "Metabolic Indexes Derived from OGTT"; 

         label index="Index"; 

       plot _sensit_ * _1mspec_ = Index / 

          vaxis=0 to 1 by .1 haxis=0 to 1 by .1; 

       run; 

       quit; 

     title; 

     title2; 

     footnote; 

* /* find the optimal cutoff */; 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=baseica); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=baseiaa); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=baseica512_res); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=basegad_res); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=basemiaa_res); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=numabs); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=basefastgluc); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=basefastins); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=basefpir); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=basehomar); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=baseratio); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=base_ogtt_fasting);   

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=base_ogtt_twohour); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=base_peak_c_pep); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=base_auc_c_pep); 

 %findcut(ds=roc, time=iddmtime, stat=iddm, cutvar=basehb); 

 

%macro ppv(var, cutoff); 

   data temp; 

    set roc; 

 if &var = . then status=.; 

 else if &var ge &cutoff then status=1; 

 else status=0; 
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 run; 

 

proc freq data=temp; 

table iddm*status; 

run; 

%mend ppv; 

%ppv(basefastgluc,5.33); 

%ppv(basefastins,10.23); 

%ppv(basefpir,156); 

%ppv(basehomar,2.64); 

%ppv(baseratio,49.22); 

%ppv(base_ogtt_fasting,88); 

%ppv(base_ogtt_twohour,114); 

%ppv(base_peak_c_pep,5.3); 

%ppv(base_auc_c_pep,595); 

%ppv(basehb,5.1); 

 

data newroc; 

   set roc; 

   if baseratio ge 49.22 then group="FPIR/HOMA-IR>=49.22"; 

  else if baseratio lt 49.22 then group="FPIR/HOMA-IR<49.22" ; 

   if base_ogtt_twohour ge 114 then status=1 ; 

   else if base_ogtt_twohour lt 114 then status=0; 

   if baseratio ge 49.22 then status1=0; 

   else if baseratio lt 49.22 then status1=1 ; 

   time=iddmtime/365.25; 

   run; 

 

   ***KM curves; 

ods listing close; 

ods output ProductLimitEstimates = s_est 

CensoredSummary = cen_sum 

HomTests = homtest 

Quartiles = quart; 

proc lifetest data = newroc; 

time time*iddm(0); 

strata group; 

id maskid; 

run; 

ods output close; 

ods listing; 

data s_est; 

set s_est; 

retain pr_s; 

if iddm = 1 then pr_s = survival; 

surviva = .; 
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if iddm = 0 then do; 

surviva = pr_s; 

survival = .; 

end; 

run; 

proc sort data = cen_sum; 

by trt; 

where control_var is missing; 

run; 

data _null_; 

set cen_sum end = last; 

pctevt = 100 - pctcens; 

call symput('groupf'||compress(_n_), 

compress(put(trt, trt.))); 

call symput('ng'||compress(_n_), 

compress(put(total, 8.))); 

call symput('ngevt'||compress(_n_), 

compress(put(failed, 8.))); 

call symput('pgevt'||compress(_n_), 

compress(put(pctevt, 8.2))); 

call symput('ngcen'||compress(_n_), 

compress(put(censored, 8.))); 

call symput('pgcen'||compress(_n_), 

compress(put(pctcens, 8.2))); 

run; 

proc sort data = homtest; 

where test = 'Log-Rank'; 

by test; 

run; 

data _null_; 

set homtest; 

call symput('logrp', compress(put(probchisq, 

pvalue6.4))); 

run; 

proc sort data = quart; 

by group; 

where percent = 50; 

run; 

data _null_; 

set quart; 

call symput('gmed'||compress(_n_), 

compress(put(estimate, 8.2))); 

call symput('llmit'||compress(_n_), 

compress(put(lowerlimit, 8.2))); 

call symput('ulmit'||compress(_n_), 

compress(put(upperlimit, 8.2))); 
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run; 

   ods html; 

 

title1 h = 3 "Figure 3.2: Kaplan-meier curves by the level of IVGTT FPIR/HOMA-IR"; 

filename event "C:\Documents and settings\xup\Desktop\PHD\disseration\manuscript 1- 

baseline ROC comparison\lifetest_event.cgm"; 

filename censor "C:\Documents and Settings\xup\Desktop\PHD\disseration\manuscript 

1- baseline ROC comparison\lifetest_censo.cgm"; 

axis1 c = black value = (h = 2.2) minor = none 

order = (0 to 1 by 0.1) width = 2 

label=(angle=90 h = 2.4 'Kaplan-Meier Estimate'); 

axis2 c = black value = (h = 2.2) 

order = (0 to 7 by 1) width = 2 

minor = none label= ( h = 2.4 "Time from Randomization to Disease Onset or Last 

Follow-up (Years)"); 

legend value = (height = 1.5) cborder = black 

label = none 

position = (TOP inside RIGHT) 

mode = share; 

goptions reset = symbol rotate = landscape 

device = cgmmwwc gsfname = event 

ctext = black cback = white 

gsfmode = replace ftext=swissb 

gsflen=80 display autofeed 

gunit = pct; 

proc gplot data = s_est gout = work.mygraf; 

note height = 1.3 j = left font = swissbu 

move = (75, 78) "Log Rank P-Value : &logrp"; 

symbol1 V = none I = steplj L = 1 c = black 

H = 1.5 W = 3.5; 

symbol2 V = none I = steplj L = 2 c = black 

H = 1.5 W = 3.5; 

plot survival*time = group 

/ name = 'g1' 

haxis=axis2 

vaxis=axis1 

legend = legend ; 

format survival 8.1 time 8.; 

run; 

  ods html close; 

 

 

* ********%findcut macro                    *; 

options mprint symbolgen macrogen mlogic;  

%macro findcut(ds=, time=, stat=, cutvar=); 
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   PROC FORMAT;                                                           

   VALUE pf   -99='>0.30';   

   proc sort data=&ds; by &cutvar; 

 

 data difage; set &ds; by &cutvar; 

   title3 "step1: check no. of disticnt &cutvar"; 

   if first.&cutvar; 

 proc sort; by &cutvar; 

 data ttt; set difage; by &cutvar; 

   cut=_N_; 

   keep &cutvar cut; 

   proc sort; by descending &cutvar; 

 data cut; set ttt; by descending &cutvar; 

   if _N_=1 then do; 

     nocut=cut; retain nocut; 

   end; 

   somecut=&cutvar; 

   drop &cutvar; 

   output;  

   proc sort; by somecut; 

data dim; set cut; by somecut; 

   if last.somecut; dummy=1; 

   keep nocut dummy; 

 proc sort; by dummy; 

 proc sort data=&ds; by descending &time &stat; 

 data step1; set &ds; by descending &time &stat; 

   title3 "check step1"; 

   if _N_=1 then do; 

     norisk=0; retain norisk; 

   end; 

   if first.&time then do; 

     nodeath=0; retain nodeath; 

   end; 

   norisk=norisk+1; 

   if &stat=1 then nodeath=nodeath+1; 

   if last.&time and &stat=1 then output; 

data step1; set step1;   

   keep &time norisk nodeath; 

   proc sort; by &time; 

data dummy; set &ds; 

   dummy=1; 

proc sort; by dummy; 

data double; merge dummy dim; by dummy;  

   do cut=1 to nocut; 

     output; 

   end; 
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proc sort; by cut; 

proc sort data=cut; by cut; 

data comb; merge double cut; by cut;   

   keep obsno &time &stat &cutvar somecut cut;  

proc sort; by cut descending &time &stat; 

proc sort data=comb; by cut descending &time &stat; 

data step2; set comb; by cut descending &time &stat; 

   title3 "check step2"; 

   if first.cut then do; 

     noriskc=0; retain noriskc; 

   end; 

   if first.&time then do; 

     nodeathc=0; retain nodeathc; 

   end; 

   if &cutvar>=somecut then noriskc=noriskc+1; 

   if &stat=1 and &cutvar>=somecut then nodeathc=nodeathc+1; 

   if last.cut or (last.&time and &stat=1) then output; 

data step2; set step2;   

   keep &time cut somecut noriskc nodeathc; 

   proc sort; by &time; 

data step3; merge step2 step1; by &time; 

   title3 "step3"; 

    r1 = noriskc; r2 = norisk - r1; r = r1 + r2; d = nodeath; 

   v = r1*r2*d*(r - d)/(r**2*(r-1));  

   sik=nodeathc-nodeath*noriskc/norisk;  

proc sort; by cut somecut; 

proc univariate noprint; var sik v; by cut; 

     output out=step4 sum=sk sumv; 

data step4; set step4; 

   title3 "step4"; 

   abs_sk=abs(sk); 

   z = abs_sk/sqrt(sumv); 

   nominal_p = 2*(1 - probnorm(z)); 

   if nominal_p > .30 then nominal_p = -99; 

   dummy=1; 

   format nominal_p pf.;  

proc sort; by dummy; 

proc univariate noprint; var abs_sk; 

   output out=step5 max=maxsk; 

data diftm; set &ds; 

   title3 "step5"; 

   if &stat=1; 

proc sort; by &time; 

data ttt; set diftm; by &time; 

   if first.&time; 

proc univariate noprint; var &time; 
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   output out=deathtim N=nodeath; 

data deathtim; set deathtim; 

   dummy=1; 

   keep nodeath dummy; 

data square; set deathtim; 

   do i=1 to nodeath; 

     do j=1 to i; 

       frac=1/(nodeath-j+1); 

       keep i j frac; 

       output; 

     end; 

   end; 

proc sort; by i j; 

data sums2; set square; by i j; 

   if first.i then do; 

     sumi=0; retain sumi; 

   end; 

   sumi=sumi+frac; 

   if last.i then do; 

     sumi=(1-sumi)*(1-sumi); 

     output; 

   end; 

proc univariate noprint; var sumi; 

   output out=d2 sum=s2 n=n2; 

data step5; set d2; 

   ssquare=(1.0/(n2-1))*s2; 

   dummy=1; 

   proc sort; by dummy; 

data step5; merge step4 step5; by dummy; 

   title3 "step 5"; 

   q=abs_sk/(sqrt(ssquare)*sqrt(n2-1)); 

   if q>1 then p=2*exp(-2*q*q); 

   if q<=1 then p=-99; 

   format p pf.; 

proc sort; by cut; 

data cut; set cut; 

   &cutvar=somecut; 

   keep cut &cutvar; 

proc sort; by cut; 

data temp; merge step5 cut; by cut; 

   if _N_=1 then do; 

     maxsk=0; maxcut=0; retain maxsk maxcut; 

   end; 

   if abs_sk>maxsk then do; 

     maxsk=abs_sk; 

     maxcut=cut; 
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   end; 

   dummy=1; 

   output; 

proc sort; by dummy; 

data temp; set temp; by dummy; 

   cut=maxcut; 

   if last.dummy then output; 

   keep cut; 

proc sort; by cut; 

data final; merge step5 cut temp(in=in1); by cut; 

   TITLE3 "Final Result"; 

   pick="     "; 

   if in1 then Pick="<===="; 

   label cut="Cutpoint" 

       sk="O-E" 

         abs_sk="ABS(sk)" 

         Q="Q statistics" 

 p="Adjusted P-value" 

   nominal_p = "Nominal P-value" 

   sumv = Variance; 

proc print label; 

   var cut &cutvar sk sumv z nominal_p p  pick; 

run; 

%mend findcut;   

%findcut; 

 

/* %ROC macro*/ 

 

%macro roc(version, data=, var=, response=, contrast=, details=no, 

           alpha=.05); 

%let opts = %sysfunc(getoption(notes)) 

            _last_=%sysfunc(getoption(_last_)); 

options nonotes; 

if %sysevalf(&sysver >= 8.2) %then %do; 

  filename _ver url 'http://ftp.sas.com/techsup/download/stat/versions.dat' termstr=crlf; 

  data _null_; 

    infile _ver; 

    input name:$15. ver; 

    if upcase(name)="&sysmacroname" then call symput("_newver",ver); 

    run; 

  %if &syserr ne 0 %then 

    %put ROC: Unable to check for newer version; 

  %else %if %sysevalf(&_newver > &_version) %then %do; 

    %put ROC: A newer version of the ROC macro is available.; 

    %put %str(         ) You can get the newer version at this location:; 

    %put %str(         ) http://support.sas.com/ctx/samples/index.jsp; 
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  %end; 

 %end; 

title "The ROC Macro"; 

title2 " "; 

%let error=0; 

%if &data= %then %do; 

    %put ERROR: Specify DATA= containing the OUT= data sets of models to be 

compared; 

    %goto exit; 

%end; 

%if &var= %then %do; 

    %put ERROR: Specify predictor or XBETA variables in the VAR= argument; 

    %goto exit; 

%end; 

%if &response= %then %do; 

    %put ERROR: Specify response variable in the RESPONSE= argument; 

    %goto exit; 

%end; 

%let i=1; 

%do %while (%scan(&data,&i) ne %str() ); 

  %let data&i=%scan(&data,&i); 

  %let i=%eval(&i+1); 

%end; 

%let ndata=%eval(&i-1); 

data _comp(keep = &var &response); 

 %if &data=%str() or &ndata=1 %then set; 

 %else merge; 

  &data; 

  if &response not in (0,1) then call symput('error',1); 

  run; 

%if &error=1 %then %do; 

  %put ERROR: Response must have values 0 or 1 only.; 

  %goto exit; 

%end; 

proc iml; 

   start mwcomp(psi,z); 

    rz  = ranktie( z[,1] );                         

    nx  = sum( z[,2] );                             

    ny  = nrow(z)-nx;                               

    loc = loc( z[,2]=1 );                           

    psi = j(nrow(z),1,0); 

    psi[loc] = (rz[loc] - ranktie(z[loc,1]))/ny;    

    loc = loc( z[,2]=0 );                           

    psi[loc] = ( nx+ranktie(z[loc,1])-rz[loc])/nx; 

    free rz loc nx ny;                              

   finish; 
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   start mwvar(t,v,nx,ny,z); 

    k   = ncol(z)-1; 

    ind = z[,k+1]; 

    v   = j(k,k,0); t=v; nx=v; ny=v; 

    do i=1 to k; 

      do j=1 to i; 

         who = loc( (z[,i]^=.)#(z[,j]^=.) );     

         run mwcomp(psii,(z[,i]||ind)[who,]);    

         run mwcomp(psij,(z[,j]||ind)[who,]); 

         inow = ind[who,];                       

         m = inow[+];                            

         n = nrow(psii)-m;                       

         nx[i,j] = m; ny[i,j] = n; 

         mi = (psii#inow)[+] / m; 

         mj = (psij#inow)[+] / m; 

         t[i,j] = mi; t[j,i] = mj; 

         psii = psii-mi; psij = psij-mj;         

         v[i,j] = (psii#psij#inow)[+]     / (m#(m-1)) 

                + (psii#psij#(1-inow))[+] / (n#(n-1)); 

         v[j,i] = v[i,j]; 

      end; 

    end; 

    free psii psij inow ind who; 

   finish; 

   use _comp var {&var &response}; 

   read all into data [colname=names]; 

   run mwvar(t,v,nx,ny,data);                  

   vname = names[1:(ncol(names)-1)]; 

   manwhit = vecdiag(t); 

 %if &contrast= %then %do; 

  %put ROC: No contrast specified.  Pairwise contrasts of all; 

  %put %str(    ) curves will be generated.; 

   call symput('col',char(ncol(data)-1)); 

  %if &col=1 %then %str(l=1;); %else %do; 

   l=(j(&col-1,1)||-i(&col-1)) 

    %do i=&col-2 %to 1 %by -1; 

        //(j(&i,&col-&i-1,0)||j(&i,1)||-i(&i)) 

    %end; 

 %end; 

   call symput('maxrow',char(comb(max(nrow(l),2),2))); 

 %end; 

 %else %do; 

   l = { &contrast }; 

   call symput('maxrow',char(nrow(l))); 

 %end; 
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   lt=l*manwhit; 

   lv=l*v*l`; 

   c = ginv(lv); 

   chisq = lt`*c*lt; 

   df = trace(c*lv); 

   p = 1 - probchi( chisq, df ); 

   stderr=sqrt(vecdiag(v)); 

   arealcl=manwhit-probit(1-&alpha/2)*stderr; 

   areaucl=manwhit+probit(1-&alpha/2)*stderr; 

   areastab=putn(manwhit||stderr||arealcl||areaucl,'7.4'); 

   sediff=sqrt(vecdiag(lv)); 

   difflcl=lt-probit(1-&alpha/2)*sediff; 

   diffucl=lt+probit(1-&alpha/2)*sediff; 

   diffchi=(lt##2)/vecdiag(lv); 

   diffp=1-probchi(diffchi,1); 

  %if %upcase(%substr(&details,1,1)) ne N %then %do; 

   print t [label='Pairwise Deletion Mann-Whitney Statistics' colname=vname 

   rowname=vname]; 

  %end; 

   print areastab [label= 

   "ROC Curve Areas and %sysevalf(100*(1-&alpha))% Confidence Intervals" 

   rowname=vname colname={'ROC Area' 'Std Error' 'Confidence' 'Limits'}]; 

   rname='Row1':"Row&maxrow"; 

%if %upcase(%substr(&details,1,1)) ne N %then %do; 

   print v [label='Estimated Variance Matrix' colname=vname rowname=vname]; 

   print nx [label='X populations sample sizes' colname=vname rowname=vname]; 

   print ny [label='Y populations sample sizes' colname=vname rowname=vname]; 

   print lv [label='Variance Estimates of Contrast' rowname=rname 

             colname=rname]; 

  %end; 

   print l [label='Contrast Coefficients' rowname=rname colname=vname]; 

   fdiffchi=putn(diffchi,'9.4'); 

   fdiffp=putn(diffp,'pvalue.'); 

   diffs=putn(lt||sediff||difflcl||diffucl,'7.4'); 

   diffstab=diffs||fdiffchi||fdiffp; 

   print diffstab [label= 

   "Tests and %sysevalf(100*(1-&alpha))% Confidence Intervals for Contrast Rows" 

   rowname=rname colname={'Estimate' 'Std Error' 'Confidence' 'Limits' 

   'Chi-square' 'Pr > ChiSq'}]; 

   c2=putn(chisq,'9.4'); 

   df2=putn(df,'3.'); 

   p2=putn(p,'pvalue.'); 

   ctest=c2||df2||p2; 

   print ctest [label='Contrast Test Results' 

         colname={'Chi-Square' '  DF' 'Pr > ChiSq'}]; 

%global pvalue; 
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   call symput('pvalue',p2); 

quit; 

%exit: 

options &opts; 

title; title2; 

%mend; 

 

/* %ROCPLOT macro*/ 

 

%macro rocplot ( version, outroc=, out=, p=, id=, plottype=high, font=swissb, 

                 size=3, color=black, plotchar=dot, 

                 roffset=4, grid=n, mindist=0.02, round=1e-8 ); 

%let _version=1.1; 

%if &version ne %then %put ROCPLOT macro Version &_version; 

%let opts = %sysfunc(getoption(notes)); 

%if &version ne debug %then %str(options nonotes;); 

%if %sysevalf(&sysver >= 8.2) %then %do; 

  %let _notfound=0; 

  filename _ver url 'http://ftp.sas.com/techsup/download/stat/versions.dat' termstr=crlf; 

  data _null_; 

    infile _ver end=_eof; 

    input name:$15. ver; 

    if upcase(name)="&sysmacroname" then do; 

       call symput("_newver",ver); stop; 

    end; 

    if _eof then call symput("_notfound",1); 

    run; 

  %if &syserr ne 0 or &_notfound=1 %then 

    %put &sysmacroname: Unable to check for newer version; 

  %else %if %sysevalf(&_newver > &_version) %then %do; 

    %put &sysmacroname: A newer version of the &sysmacroname macro is available.; 

    %put %str(         ) You can get the newer version at this location:; 

    %put %str(         ) http://support.sas.com/ctx/samples/index.jsp; 

  %end; 

 %end; 

%let nomatch=0; 

%if %quote(&id)= %then %do; 

  %put ERROR: At least one ID= variable is required.; 

  %goto exit; 

%end; 

%if %quote(&p)= %then %do; 

  %put ERROR: The P= option is required.; 

  %goto exit; 

%end; 

%if %quote(&outroc) ne %then %do; 

  %if %sysfunc(exist(&outroc)) ne 1 %then %do; 
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    %put ERROR: OUTROC= data set not found.; 

    %goto exit; 

  %end; 

%end; 

%else %do; 

  %put ERROR: The OUTROC= option is required.; 

  %goto exit; 

%end; 

%if %quote(&out) ne %then %do; 

  %if %sysfunc(exist(&out)) ne 1 %then %do; 

    %put ERROR: OUT= data set not found.; 

    %goto exit; 

  %end; 

%end; 

%else %do; 

  %put ERROR: The OUT= option is required.; 

  %goto exit; 

%end; 

data _outroc; 

   set &outroc; 

   _prob_=round(_prob_,&round); 

   run; 

data _out; 

   set &out; 

   _obs_=_n_; 

   if &p = . then delete; 

   _prob_=round(&p , &round); 

   run; 

proc sort data=_out nodupkey; 

   by _prob_; 

   run; 

proc sort data=_outroc nodupkey; 

   by _prob_; 

   run; 

data _rocplot; 

   _inout=0; _inroc=0; 

   merge _outroc(in=_inroc) _out(in=_inout); 

   by _prob_; 

   if not(_inout and _inroc) then do; 

     call symput('nomatch',1); 

     delete; 

   end; 

   length _id $ 200; 

   _sens_=put(_sensit_,5.3); 

   _spec_=put(-_1mspec_+1,5.3); 

   _id=trim(left(%scan(&id,1))) 
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        %let i=2; 

        %do %while (%scan(&id,&i) ne %str() ); 

   ||'/'||trim(left(%scan(&id,&i))) 

          %let i=%eval(&i+1); 

        %end;  ; 

   run; 

%if &nomatch=1 %then %do; 

  %put ROCPLOT: Some predicted values in OUT= did not match predicted values; 

  %put %str(         in OUTROC=.  Verify that you used the ROCEPS=0 option in); 

  %put %str(         PROC LOGISTIC.); 

%end; 

data _add00; 

   _sensit_=0; _1mspec_=0; 

   run; 

%if %upcase(%substr(&plottype,1,1))=L %then %do; 

   data _rocplot; 

      set _rocplot _add00; 

      run; 

proc plot data=_rocplot; 

      plot _sensit_*_1mspec_ / 

           haxis=0 to 1 by .1 vaxis=0 to 1 by .1; 

      run; quit; 

   footnote "Point labels are values of &id"; 

proc plot data=_rocplot; 

      plot _sensit_*_1mspec_ $ _id / 

           haxis=0 to 1 by .1 vaxis=0 to 1 by .1; 

      run; quit; 

%end; 

%if %upcase(%substr(&plottype,1,1))=H %then %do; 

data _anno; 

      length function style color $ 8 position $ 1 text $ 200; 

      retain function 'label' xsys ysys '2' hsys '3' 

             size &size position '6' style "&font" 

             color "&color" xprev xprevtop 1.4; 

      set _rocplot(keep=_sensit_ _1mspec_ _id) end=eof; 

      by _1mspec_ notsorted; 

      x=_1mspec_; y=_sensit_+.025; 

           if last._1mspec_ then do; 

         if xprev-x>=&mindist then do; 

            text="  "||trim(left(_id)); 

            xprev=x; 

         end; 

         else text=""; 

      end; 

      else if first._1mspec_ then do; 

         if xprevtop-x>=&mindist then do; 
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           text=trim(left(_id)); 

           xprevtop=x; 

         end; 

         else text=""; 

         position=4; 

      end; 

      else text=""; 

      angle=350-x*80; output; 

      position='6' 

      if eof then do; 

        x=0; y=0; function='move'; output; 

        x=1; y=1; function='draw'; line=1; hsys='1'; size=0.25; output; 

      end; 

      run; 

data _rocplot; 

      set _rocplot _add00; 

      run; 

   symbol1 i=join v=&plotchar c=darkblue l=1; 

   footnote "Point labels are values of &id"; 

   axis1 offset=(&roffset,&roffset)pct order=(0 to 1 by .1); 

   axis2 offset=(&roffset,&roffset)pct order=(0 to 1 by .1) label=(angle=90); 

proc gplot data=_rocplot; 

      plot _sensit_*_1mspec_=1 / vaxis=axis2 

                                 haxis=axis1 annotate=_anno 

           %if %upcase(%substr(&grid,1,1))=Y %then %do; 

                                 vref=0 to 1 by .1 href=0 to 1 by .1 

                                 cvref=cxd4d4d4 chref=cxd4d4d4 

         run; 

      quit; 

%end; 

footnote; 

%exit: 

options &opts; 

%mend; 
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